| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brfvopab.1 | ⊢ ( 𝑋  ∈  V  →  ( 𝐹 ‘ 𝑋 )  =  { 〈 𝑦 ,  𝑧 〉  ∣  𝜑 } ) | 
						
							| 2 | 1 | breqd | ⊢ ( 𝑋  ∈  V  →  ( 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵  ↔  𝐴 { 〈 𝑦 ,  𝑧 〉  ∣  𝜑 } 𝐵 ) ) | 
						
							| 3 |  | brabv | ⊢ ( 𝐴 { 〈 𝑦 ,  𝑧 〉  ∣  𝜑 } 𝐵  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 4 | 2 3 | biimtrdi | ⊢ ( 𝑋  ∈  V  →  ( 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵  →  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) ) | 
						
							| 5 | 4 | imdistani | ⊢ ( ( 𝑋  ∈  V  ∧  𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵 )  →  ( 𝑋  ∈  V  ∧  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) ) | 
						
							| 6 |  | 3anass | ⊢ ( ( 𝑋  ∈  V  ∧  𝐴  ∈  V  ∧  𝐵  ∈  V )  ↔  ( 𝑋  ∈  V  ∧  ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) ) ) | 
						
							| 7 | 5 6 | sylibr | ⊢ ( ( 𝑋  ∈  V  ∧  𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵 )  →  ( 𝑋  ∈  V  ∧  𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 8 | 7 | ex | ⊢ ( 𝑋  ∈  V  →  ( 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵  →  ( 𝑋  ∈  V  ∧  𝐴  ∈  V  ∧  𝐵  ∈  V ) ) ) | 
						
							| 9 |  | fvprc | ⊢ ( ¬  𝑋  ∈  V  →  ( 𝐹 ‘ 𝑋 )  =  ∅ ) | 
						
							| 10 |  | breq | ⊢ ( ( 𝐹 ‘ 𝑋 )  =  ∅  →  ( 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵  ↔  𝐴 ∅ 𝐵 ) ) | 
						
							| 11 |  | br0 | ⊢ ¬  𝐴 ∅ 𝐵 | 
						
							| 12 | 11 | pm2.21i | ⊢ ( 𝐴 ∅ 𝐵  →  ( 𝑋  ∈  V  ∧  𝐴  ∈  V  ∧  𝐵  ∈  V ) ) | 
						
							| 13 | 10 12 | biimtrdi | ⊢ ( ( 𝐹 ‘ 𝑋 )  =  ∅  →  ( 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵  →  ( 𝑋  ∈  V  ∧  𝐴  ∈  V  ∧  𝐵  ∈  V ) ) ) | 
						
							| 14 | 9 13 | syl | ⊢ ( ¬  𝑋  ∈  V  →  ( 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵  →  ( 𝑋  ∈  V  ∧  𝐴  ∈  V  ∧  𝐵  ∈  V ) ) ) | 
						
							| 15 | 8 14 | pm2.61i | ⊢ ( 𝐴 ( 𝐹 ‘ 𝑋 ) 𝐵  →  ( 𝑋  ∈  V  ∧  𝐴  ∈  V  ∧  𝐵  ∈  V ) ) |