Step |
Hyp |
Ref |
Expression |
1 |
|
upwlksfval.v |
|- V = ( Vtx ` G ) |
2 |
|
upwlksfval.i |
|- I = ( iEdg ` G ) |
3 |
1 2
|
upwlksfval |
|- ( G e. _V -> ( UPWalks ` G ) = { <. f , p >. | ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) } ) |
4 |
3
|
brfvopab |
|- ( F ( UPWalks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
5 |
4
|
a1i |
|- ( G e. W -> ( F ( UPWalks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) ) |
6 |
|
elex |
|- ( G e. W -> G e. _V ) |
7 |
|
elex |
|- ( F e. Word dom I -> F e. _V ) |
8 |
|
ovex |
|- ( 0 ... ( # ` F ) ) e. _V |
9 |
1
|
fvexi |
|- V e. _V |
10 |
8 9
|
fpm |
|- ( P : ( 0 ... ( # ` F ) ) --> V -> P e. ( V ^pm ( 0 ... ( # ` F ) ) ) ) |
11 |
10
|
elexd |
|- ( P : ( 0 ... ( # ` F ) ) --> V -> P e. _V ) |
12 |
7 11
|
anim12i |
|- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) -> ( F e. _V /\ P e. _V ) ) |
13 |
12
|
3adant3 |
|- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( F e. _V /\ P e. _V ) ) |
14 |
6 13
|
anim12i |
|- ( ( G e. W /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) -> ( G e. _V /\ ( F e. _V /\ P e. _V ) ) ) |
15 |
14
|
ex |
|- ( G e. W -> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( G e. _V /\ ( F e. _V /\ P e. _V ) ) ) ) |
16 |
|
3anass |
|- ( ( G e. _V /\ F e. _V /\ P e. _V ) <-> ( G e. _V /\ ( F e. _V /\ P e. _V ) ) ) |
17 |
15 16
|
syl6ibr |
|- ( G e. W -> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( G e. _V /\ F e. _V /\ P e. _V ) ) ) |
18 |
1 2
|
isupwlk |
|- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F ( UPWalks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
19 |
18
|
a1i |
|- ( G e. W -> ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F ( UPWalks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) ) |
20 |
5 17 19
|
pm5.21ndd |
|- ( G e. W -> ( F ( UPWalks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |