| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upwlksfval.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | upwlksfval.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 |  | df-upwlks |  |-  UPWalks = ( g e. _V |-> { <. f , p >. | ( f e. Word dom ( iEdg ` g ) /\ p : ( 0 ... ( # ` f ) ) --> ( Vtx ` g ) /\ A. k e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` g ) ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) } ) | 
						
							| 4 |  | fveq2 |  |-  ( g = G -> ( iEdg ` g ) = ( iEdg ` G ) ) | 
						
							| 5 | 4 2 | eqtr4di |  |-  ( g = G -> ( iEdg ` g ) = I ) | 
						
							| 6 | 5 | dmeqd |  |-  ( g = G -> dom ( iEdg ` g ) = dom I ) | 
						
							| 7 |  | wrdeq |  |-  ( dom ( iEdg ` g ) = dom I -> Word dom ( iEdg ` g ) = Word dom I ) | 
						
							| 8 | 6 7 | syl |  |-  ( g = G -> Word dom ( iEdg ` g ) = Word dom I ) | 
						
							| 9 | 8 | eleq2d |  |-  ( g = G -> ( f e. Word dom ( iEdg ` g ) <-> f e. Word dom I ) ) | 
						
							| 10 |  | fveq2 |  |-  ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) | 
						
							| 11 | 10 1 | eqtr4di |  |-  ( g = G -> ( Vtx ` g ) = V ) | 
						
							| 12 | 11 | feq3d |  |-  ( g = G -> ( p : ( 0 ... ( # ` f ) ) --> ( Vtx ` g ) <-> p : ( 0 ... ( # ` f ) ) --> V ) ) | 
						
							| 13 | 5 | fveq1d |  |-  ( g = G -> ( ( iEdg ` g ) ` ( f ` k ) ) = ( I ` ( f ` k ) ) ) | 
						
							| 14 | 13 | eqeq1d |  |-  ( g = G -> ( ( ( iEdg ` g ) ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } <-> ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) ) | 
						
							| 15 | 14 | ralbidv |  |-  ( g = G -> ( A. k e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` g ) ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } <-> A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) ) | 
						
							| 16 | 9 12 15 | 3anbi123d |  |-  ( g = G -> ( ( f e. Word dom ( iEdg ` g ) /\ p : ( 0 ... ( # ` f ) ) --> ( Vtx ` g ) /\ A. k e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` g ) ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) <-> ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) ) ) | 
						
							| 17 | 16 | opabbidv |  |-  ( g = G -> { <. f , p >. | ( f e. Word dom ( iEdg ` g ) /\ p : ( 0 ... ( # ` f ) ) --> ( Vtx ` g ) /\ A. k e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` g ) ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) } = { <. f , p >. | ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) } ) | 
						
							| 18 |  | elex |  |-  ( G e. W -> G e. _V ) | 
						
							| 19 |  | 3anass |  |-  ( ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) <-> ( f e. Word dom I /\ ( p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) ) ) | 
						
							| 20 | 19 | opabbii |  |-  { <. f , p >. | ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) } = { <. f , p >. | ( f e. Word dom I /\ ( p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) ) } | 
						
							| 21 | 2 | fvexi |  |-  I e. _V | 
						
							| 22 | 21 | dmex |  |-  dom I e. _V | 
						
							| 23 |  | wrdexg |  |-  ( dom I e. _V -> Word dom I e. _V ) | 
						
							| 24 | 22 23 | mp1i |  |-  ( G e. W -> Word dom I e. _V ) | 
						
							| 25 |  | ovex |  |-  ( 0 ... ( # ` f ) ) e. _V | 
						
							| 26 | 1 | fvexi |  |-  V e. _V | 
						
							| 27 | 26 | a1i |  |-  ( ( G e. W /\ f e. Word dom I ) -> V e. _V ) | 
						
							| 28 |  | mapex |  |-  ( ( ( 0 ... ( # ` f ) ) e. _V /\ V e. _V ) -> { p | p : ( 0 ... ( # ` f ) ) --> V } e. _V ) | 
						
							| 29 | 25 27 28 | sylancr |  |-  ( ( G e. W /\ f e. Word dom I ) -> { p | p : ( 0 ... ( # ` f ) ) --> V } e. _V ) | 
						
							| 30 |  | simpl |  |-  ( ( p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) -> p : ( 0 ... ( # ` f ) ) --> V ) | 
						
							| 31 | 30 | ss2abi |  |-  { p | ( p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) } C_ { p | p : ( 0 ... ( # ` f ) ) --> V } | 
						
							| 32 | 31 | a1i |  |-  ( ( G e. W /\ f e. Word dom I ) -> { p | ( p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) } C_ { p | p : ( 0 ... ( # ` f ) ) --> V } ) | 
						
							| 33 | 29 32 | ssexd |  |-  ( ( G e. W /\ f e. Word dom I ) -> { p | ( p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) } e. _V ) | 
						
							| 34 | 24 33 | opabex3d |  |-  ( G e. W -> { <. f , p >. | ( f e. Word dom I /\ ( p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) ) } e. _V ) | 
						
							| 35 | 20 34 | eqeltrid |  |-  ( G e. W -> { <. f , p >. | ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) } e. _V ) | 
						
							| 36 | 3 17 18 35 | fvmptd3 |  |-  ( G e. W -> ( UPWalks ` G ) = { <. f , p >. | ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) } ) |