Metamath Proof Explorer


Theorem isupwlk

Description: Properties of a pair of functions to be a simple walk. (Contributed by Alexander van der Vekens, 20-Oct-2017) (Revised by AV, 28-Dec-2020)

Ref Expression
Hypotheses upwlksfval.v V=VtxG
upwlksfval.i I=iEdgG
Assertion isupwlk GWFUPZFUPWalksGPFWorddomIP:0FVk0..^FIFk=PkPk+1

Proof

Step Hyp Ref Expression
1 upwlksfval.v V=VtxG
2 upwlksfval.i I=iEdgG
3 df-br FUPWalksGPFPUPWalksG
4 1 2 upwlksfval GWUPWalksG=fp|fWorddomIp:0fVk0..^fIfk=pkpk+1
5 4 3ad2ant1 GWFUPZUPWalksG=fp|fWorddomIp:0fVk0..^fIfk=pkpk+1
6 5 eleq2d GWFUPZFPUPWalksGFPfp|fWorddomIp:0fVk0..^fIfk=pkpk+1
7 3 6 bitrid GWFUPZFUPWalksGPFPfp|fWorddomIp:0fVk0..^fIfk=pkpk+1
8 eleq1 f=FfWorddomIFWorddomI
9 8 adantr f=Fp=PfWorddomIFWorddomI
10 simpr f=Fp=Pp=P
11 fveq2 f=Ff=F
12 11 oveq2d f=F0f=0F
13 12 adantr f=Fp=P0f=0F
14 10 13 feq12d f=Fp=Pp:0fVP:0FV
15 11 oveq2d f=F0..^f=0..^F
16 15 adantr f=Fp=P0..^f=0..^F
17 fveq1 f=Ffk=Fk
18 17 fveq2d f=FIfk=IFk
19 fveq1 p=Ppk=Pk
20 fveq1 p=Ppk+1=Pk+1
21 19 20 preq12d p=Ppkpk+1=PkPk+1
22 18 21 eqeqan12d f=Fp=PIfk=pkpk+1IFk=PkPk+1
23 16 22 raleqbidv f=Fp=Pk0..^fIfk=pkpk+1k0..^FIFk=PkPk+1
24 9 14 23 3anbi123d f=Fp=PfWorddomIp:0fVk0..^fIfk=pkpk+1FWorddomIP:0FVk0..^FIFk=PkPk+1
25 24 opelopabga FUPZFPfp|fWorddomIp:0fVk0..^fIfk=pkpk+1FWorddomIP:0FVk0..^FIFk=PkPk+1
26 25 3adant1 GWFUPZFPfp|fWorddomIp:0fVk0..^fIfk=pkpk+1FWorddomIP:0FVk0..^FIFk=PkPk+1
27 7 26 bitrd GWFUPZFUPWalksGPFWorddomIP:0FVk0..^FIFk=PkPk+1