| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkv |  |-  ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) | 
						
							| 2 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 3 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 4 | 2 3 | iswlk |  |-  ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F ( Walks ` G ) P <-> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) ) | 
						
							| 5 |  | simpr1 |  |-  ( ( ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) -> F e. Word dom ( iEdg ` G ) ) | 
						
							| 6 |  | simpr2 |  |-  ( ( ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) | 
						
							| 7 |  | df-ifp |  |-  ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) <-> ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) | 
						
							| 8 |  | dfsn2 |  |-  { ( P ` k ) } = { ( P ` k ) , ( P ` k ) } | 
						
							| 9 |  | preq2 |  |-  ( ( P ` k ) = ( P ` ( k + 1 ) ) -> { ( P ` k ) , ( P ` k ) } = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) | 
						
							| 10 | 8 9 | eqtrid |  |-  ( ( P ` k ) = ( P ` ( k + 1 ) ) -> { ( P ` k ) } = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) | 
						
							| 11 | 10 | eqeq2d |  |-  ( ( P ` k ) = ( P ` ( k + 1 ) ) -> ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } <-> ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) | 
						
							| 12 | 11 | biimpa |  |-  ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) -> ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) | 
						
							| 13 | 12 | a1d |  |-  ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) -> ( ( ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) | 
						
							| 14 |  | simpr |  |-  ( ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) -> G e. UPGraph ) | 
						
							| 15 |  | simpl |  |-  ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> F e. Word dom ( iEdg ` G ) ) | 
						
							| 16 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 17 | 3 16 | upgredginwlk |  |-  ( ( G e. UPGraph /\ F e. Word dom ( iEdg ` G ) ) -> ( k e. ( 0 ..^ ( # ` F ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) e. ( Edg ` G ) ) ) | 
						
							| 18 | 14 15 17 | syl2anr |  |-  ( ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) ) -> ( k e. ( 0 ..^ ( # ` F ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) e. ( Edg ` G ) ) ) | 
						
							| 19 | 18 | imp |  |-  ( ( ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) e. ( Edg ` G ) ) | 
						
							| 20 |  | simprr |  |-  ( ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) ) -> G e. UPGraph ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> G e. UPGraph ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) e. ( Edg ` G ) ) -> G e. UPGraph ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( ( ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) e. ( Edg ` G ) ) /\ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> G e. UPGraph ) | 
						
							| 24 |  | simplr |  |-  ( ( ( ( ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) e. ( Edg ` G ) ) /\ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) e. ( Edg ` G ) ) | 
						
							| 25 |  | simprr |  |-  ( ( ( ( ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) e. ( Edg ` G ) ) /\ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) | 
						
							| 26 |  | df-ne |  |-  ( ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> -. ( P ` k ) = ( P ` ( k + 1 ) ) ) | 
						
							| 27 |  | fvexd |  |-  ( ( P ` k ) =/= ( P ` ( k + 1 ) ) -> ( P ` k ) e. _V ) | 
						
							| 28 |  | fvexd |  |-  ( ( P ` k ) =/= ( P ` ( k + 1 ) ) -> ( P ` ( k + 1 ) ) e. _V ) | 
						
							| 29 |  | id |  |-  ( ( P ` k ) =/= ( P ` ( k + 1 ) ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) | 
						
							| 30 | 27 28 29 | 3jca |  |-  ( ( P ` k ) =/= ( P ` ( k + 1 ) ) -> ( ( P ` k ) e. _V /\ ( P ` ( k + 1 ) ) e. _V /\ ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) | 
						
							| 31 | 26 30 | sylbir |  |-  ( -. ( P ` k ) = ( P ` ( k + 1 ) ) -> ( ( P ` k ) e. _V /\ ( P ` ( k + 1 ) ) e. _V /\ ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) | 
						
							| 32 | 31 | adantr |  |-  ( ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( ( P ` k ) e. _V /\ ( P ` ( k + 1 ) ) e. _V /\ ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ( ( ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) e. ( Edg ` G ) ) /\ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( ( P ` k ) e. _V /\ ( P ` ( k + 1 ) ) e. _V /\ ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) | 
						
							| 34 | 2 16 | upgredgpr |  |-  ( ( ( G e. UPGraph /\ ( ( iEdg ` G ) ` ( F ` k ) ) e. ( Edg ` G ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) /\ ( ( P ` k ) e. _V /\ ( P ` ( k + 1 ) ) e. _V /\ ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = ( ( iEdg ` G ) ` ( F ` k ) ) ) | 
						
							| 35 | 23 24 25 33 34 | syl31anc |  |-  ( ( ( ( ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) e. ( Edg ` G ) ) /\ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = ( ( iEdg ` G ) ` ( F ` k ) ) ) | 
						
							| 36 | 35 | eqcomd |  |-  ( ( ( ( ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) e. ( Edg ` G ) ) /\ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) | 
						
							| 37 | 36 | exp31 |  |-  ( ( ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( iEdg ` G ) ` ( F ` k ) ) e. ( Edg ` G ) -> ( ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) | 
						
							| 38 | 19 37 | mpd |  |-  ( ( ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) | 
						
							| 39 | 38 | com12 |  |-  ( ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( ( ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) | 
						
							| 40 | 13 39 | jaoi |  |-  ( ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( ( ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) | 
						
							| 41 | 40 | com12 |  |-  ( ( ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) | 
						
							| 42 | 7 41 | biimtrid |  |-  ( ( ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) | 
						
							| 43 | 42 | ralimdva |  |-  ( ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) | 
						
							| 44 | 43 | ex |  |-  ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> ( ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) | 
						
							| 45 | 44 | com23 |  |-  ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) | 
						
							| 46 | 45 | 3impia |  |-  ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) | 
						
							| 47 | 46 | impcom |  |-  ( ( ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) | 
						
							| 48 | 5 6 47 | 3jca |  |-  ( ( ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ G e. UPGraph ) /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) -> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) | 
						
							| 49 | 48 | exp31 |  |-  ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( G e. UPGraph -> ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) ) | 
						
							| 50 | 49 | com23 |  |-  ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( G e. UPGraph -> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) ) | 
						
							| 51 | 4 50 | sylbid |  |-  ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F ( Walks ` G ) P -> ( G e. UPGraph -> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) ) | 
						
							| 52 | 51 | impd |  |-  ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( ( F ( Walks ` G ) P /\ G e. UPGraph ) -> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) | 
						
							| 53 | 52 | impcom |  |-  ( ( ( F ( Walks ` G ) P /\ G e. UPGraph ) /\ ( G e. _V /\ F e. _V /\ P e. _V ) ) -> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) | 
						
							| 54 | 2 3 | isupwlk |  |-  ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F ( UPWalks ` G ) P <-> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) | 
						
							| 55 | 54 | adantl |  |-  ( ( ( F ( Walks ` G ) P /\ G e. UPGraph ) /\ ( G e. _V /\ F e. _V /\ P e. _V ) ) -> ( F ( UPWalks ` G ) P <-> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) | 
						
							| 56 | 53 55 | mpbird |  |-  ( ( ( F ( Walks ` G ) P /\ G e. UPGraph ) /\ ( G e. _V /\ F e. _V /\ P e. _V ) ) -> F ( UPWalks ` G ) P ) | 
						
							| 57 | 56 | exp31 |  |-  ( F ( Walks ` G ) P -> ( G e. UPGraph -> ( ( G e. _V /\ F e. _V /\ P e. _V ) -> F ( UPWalks ` G ) P ) ) ) | 
						
							| 58 | 1 57 | mpid |  |-  ( F ( Walks ` G ) P -> ( G e. UPGraph -> F ( UPWalks ` G ) P ) ) | 
						
							| 59 | 58 | impcom |  |-  ( ( G e. UPGraph /\ F ( Walks ` G ) P ) -> F ( UPWalks ` G ) P ) |