Description: In a pseudograph, a walk is a simple walk. (Contributed by AV, 30-Dec-2020) (Proof shortened by AV, 2-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | upgrwlkupwlk | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkv | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | 2 3 | iswlk | |
5 | simpr1 | |
|
6 | simpr2 | |
|
7 | df-ifp | |
|
8 | dfsn2 | |
|
9 | preq2 | |
|
10 | 8 9 | eqtrid | |
11 | 10 | eqeq2d | |
12 | 11 | biimpa | |
13 | 12 | a1d | |
14 | simpr | |
|
15 | simpl | |
|
16 | eqid | |
|
17 | 3 16 | upgredginwlk | |
18 | 14 15 17 | syl2anr | |
19 | 18 | imp | |
20 | simprr | |
|
21 | 20 | adantr | |
22 | 21 | adantr | |
23 | 22 | adantr | |
24 | simplr | |
|
25 | simprr | |
|
26 | df-ne | |
|
27 | fvexd | |
|
28 | fvexd | |
|
29 | id | |
|
30 | 27 28 29 | 3jca | |
31 | 26 30 | sylbir | |
32 | 31 | adantr | |
33 | 32 | adantl | |
34 | 2 16 | upgredgpr | |
35 | 23 24 25 33 34 | syl31anc | |
36 | 35 | eqcomd | |
37 | 36 | exp31 | |
38 | 19 37 | mpd | |
39 | 38 | com12 | |
40 | 13 39 | jaoi | |
41 | 40 | com12 | |
42 | 7 41 | biimtrid | |
43 | 42 | ralimdva | |
44 | 43 | ex | |
45 | 44 | com23 | |
46 | 45 | 3impia | |
47 | 46 | impcom | |
48 | 5 6 47 | 3jca | |
49 | 48 | exp31 | |
50 | 49 | com23 | |
51 | 4 50 | sylbid | |
52 | 51 | impd | |
53 | 52 | impcom | |
54 | 2 3 | isupwlk | |
55 | 54 | adantl | |
56 | 53 55 | mpbird | |
57 | 56 | exp31 | |
58 | 1 57 | mpid | |
59 | 58 | impcom | |