Metamath Proof Explorer


Theorem upgrwlkupwlk

Description: In a pseudograph, a walk is a simple walk. (Contributed by AV, 30-Dec-2020) (Proof shortened by AV, 2-Jan-2021)

Ref Expression
Assertion upgrwlkupwlk GUPGraphFWalksGPFUPWalksGP

Proof

Step Hyp Ref Expression
1 wlkv FWalksGPGVFVPV
2 eqid VtxG=VtxG
3 eqid iEdgG=iEdgG
4 2 3 iswlk GVFVPVFWalksGPFWorddomiEdgGP:0FVtxGk0..^Fif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFk
5 simpr1 GVFVPVGUPGraphFWorddomiEdgGP:0FVtxGk0..^Fif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkFWorddomiEdgG
6 simpr2 GVFVPVGUPGraphFWorddomiEdgGP:0FVtxGk0..^Fif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkP:0FVtxG
7 df-ifp if-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkPk=Pk+1iEdgGFk=Pk¬Pk=Pk+1PkPk+1iEdgGFk
8 dfsn2 Pk=PkPk
9 preq2 Pk=Pk+1PkPk=PkPk+1
10 8 9 eqtrid Pk=Pk+1Pk=PkPk+1
11 10 eqeq2d Pk=Pk+1iEdgGFk=PkiEdgGFk=PkPk+1
12 11 biimpa Pk=Pk+1iEdgGFk=PkiEdgGFk=PkPk+1
13 12 a1d Pk=Pk+1iEdgGFk=PkFWorddomiEdgGP:0FVtxGGVFVPVGUPGraphk0..^FiEdgGFk=PkPk+1
14 simpr GVFVPVGUPGraphGUPGraph
15 simpl FWorddomiEdgGP:0FVtxGFWorddomiEdgG
16 eqid EdgG=EdgG
17 3 16 upgredginwlk GUPGraphFWorddomiEdgGk0..^FiEdgGFkEdgG
18 14 15 17 syl2anr FWorddomiEdgGP:0FVtxGGVFVPVGUPGraphk0..^FiEdgGFkEdgG
19 18 imp FWorddomiEdgGP:0FVtxGGVFVPVGUPGraphk0..^FiEdgGFkEdgG
20 simprr FWorddomiEdgGP:0FVtxGGVFVPVGUPGraphGUPGraph
21 20 adantr FWorddomiEdgGP:0FVtxGGVFVPVGUPGraphk0..^FGUPGraph
22 21 adantr FWorddomiEdgGP:0FVtxGGVFVPVGUPGraphk0..^FiEdgGFkEdgGGUPGraph
23 22 adantr FWorddomiEdgGP:0FVtxGGVFVPVGUPGraphk0..^FiEdgGFkEdgG¬Pk=Pk+1PkPk+1iEdgGFkGUPGraph
24 simplr FWorddomiEdgGP:0FVtxGGVFVPVGUPGraphk0..^FiEdgGFkEdgG¬Pk=Pk+1PkPk+1iEdgGFkiEdgGFkEdgG
25 simprr FWorddomiEdgGP:0FVtxGGVFVPVGUPGraphk0..^FiEdgGFkEdgG¬Pk=Pk+1PkPk+1iEdgGFkPkPk+1iEdgGFk
26 df-ne PkPk+1¬Pk=Pk+1
27 fvexd PkPk+1PkV
28 fvexd PkPk+1Pk+1V
29 id PkPk+1PkPk+1
30 27 28 29 3jca PkPk+1PkVPk+1VPkPk+1
31 26 30 sylbir ¬Pk=Pk+1PkVPk+1VPkPk+1
32 31 adantr ¬Pk=Pk+1PkPk+1iEdgGFkPkVPk+1VPkPk+1
33 32 adantl FWorddomiEdgGP:0FVtxGGVFVPVGUPGraphk0..^FiEdgGFkEdgG¬Pk=Pk+1PkPk+1iEdgGFkPkVPk+1VPkPk+1
34 2 16 upgredgpr GUPGraphiEdgGFkEdgGPkPk+1iEdgGFkPkVPk+1VPkPk+1PkPk+1=iEdgGFk
35 23 24 25 33 34 syl31anc FWorddomiEdgGP:0FVtxGGVFVPVGUPGraphk0..^FiEdgGFkEdgG¬Pk=Pk+1PkPk+1iEdgGFkPkPk+1=iEdgGFk
36 35 eqcomd FWorddomiEdgGP:0FVtxGGVFVPVGUPGraphk0..^FiEdgGFkEdgG¬Pk=Pk+1PkPk+1iEdgGFkiEdgGFk=PkPk+1
37 36 exp31 FWorddomiEdgGP:0FVtxGGVFVPVGUPGraphk0..^FiEdgGFkEdgG¬Pk=Pk+1PkPk+1iEdgGFkiEdgGFk=PkPk+1
38 19 37 mpd FWorddomiEdgGP:0FVtxGGVFVPVGUPGraphk0..^F¬Pk=Pk+1PkPk+1iEdgGFkiEdgGFk=PkPk+1
39 38 com12 ¬Pk=Pk+1PkPk+1iEdgGFkFWorddomiEdgGP:0FVtxGGVFVPVGUPGraphk0..^FiEdgGFk=PkPk+1
40 13 39 jaoi Pk=Pk+1iEdgGFk=Pk¬Pk=Pk+1PkPk+1iEdgGFkFWorddomiEdgGP:0FVtxGGVFVPVGUPGraphk0..^FiEdgGFk=PkPk+1
41 40 com12 FWorddomiEdgGP:0FVtxGGVFVPVGUPGraphk0..^FPk=Pk+1iEdgGFk=Pk¬Pk=Pk+1PkPk+1iEdgGFkiEdgGFk=PkPk+1
42 7 41 biimtrid FWorddomiEdgGP:0FVtxGGVFVPVGUPGraphk0..^Fif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkiEdgGFk=PkPk+1
43 42 ralimdva FWorddomiEdgGP:0FVtxGGVFVPVGUPGraphk0..^Fif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkk0..^FiEdgGFk=PkPk+1
44 43 ex FWorddomiEdgGP:0FVtxGGVFVPVGUPGraphk0..^Fif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkk0..^FiEdgGFk=PkPk+1
45 44 com23 FWorddomiEdgGP:0FVtxGk0..^Fif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkGVFVPVGUPGraphk0..^FiEdgGFk=PkPk+1
46 45 3impia FWorddomiEdgGP:0FVtxGk0..^Fif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkGVFVPVGUPGraphk0..^FiEdgGFk=PkPk+1
47 46 impcom GVFVPVGUPGraphFWorddomiEdgGP:0FVtxGk0..^Fif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkk0..^FiEdgGFk=PkPk+1
48 5 6 47 3jca GVFVPVGUPGraphFWorddomiEdgGP:0FVtxGk0..^Fif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkFWorddomiEdgGP:0FVtxGk0..^FiEdgGFk=PkPk+1
49 48 exp31 GVFVPVGUPGraphFWorddomiEdgGP:0FVtxGk0..^Fif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkFWorddomiEdgGP:0FVtxGk0..^FiEdgGFk=PkPk+1
50 49 com23 GVFVPVFWorddomiEdgGP:0FVtxGk0..^Fif-Pk=Pk+1iEdgGFk=PkPkPk+1iEdgGFkGUPGraphFWorddomiEdgGP:0FVtxGk0..^FiEdgGFk=PkPk+1
51 4 50 sylbid GVFVPVFWalksGPGUPGraphFWorddomiEdgGP:0FVtxGk0..^FiEdgGFk=PkPk+1
52 51 impd GVFVPVFWalksGPGUPGraphFWorddomiEdgGP:0FVtxGk0..^FiEdgGFk=PkPk+1
53 52 impcom FWalksGPGUPGraphGVFVPVFWorddomiEdgGP:0FVtxGk0..^FiEdgGFk=PkPk+1
54 2 3 isupwlk GVFVPVFUPWalksGPFWorddomiEdgGP:0FVtxGk0..^FiEdgGFk=PkPk+1
55 54 adantl FWalksGPGUPGraphGVFVPVFUPWalksGPFWorddomiEdgGP:0FVtxGk0..^FiEdgGFk=PkPk+1
56 53 55 mpbird FWalksGPGUPGraphGVFVPVFUPWalksGP
57 56 exp31 FWalksGPGUPGraphGVFVPVFUPWalksGP
58 1 57 mpid FWalksGPGUPGraphFUPWalksGP
59 58 impcom GUPGraphFWalksGPFUPWalksGP