| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgrnbcnvfv.i |
|- I = ( iEdg ` G ) |
| 2 |
1
|
usgrf1o |
|- ( G e. USGraph -> I : dom I -1-1-onto-> ran I ) |
| 3 |
|
prcom |
|- { N , K } = { K , N } |
| 4 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
| 5 |
4
|
nbusgreledg |
|- ( G e. USGraph -> ( N e. ( G NeighbVtx K ) <-> { N , K } e. ( Edg ` G ) ) ) |
| 6 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
| 7 |
1
|
eqcomi |
|- ( iEdg ` G ) = I |
| 8 |
7
|
rneqi |
|- ran ( iEdg ` G ) = ran I |
| 9 |
6 8
|
eqtri |
|- ( Edg ` G ) = ran I |
| 10 |
9
|
a1i |
|- ( G e. USGraph -> ( Edg ` G ) = ran I ) |
| 11 |
10
|
eleq2d |
|- ( G e. USGraph -> ( { N , K } e. ( Edg ` G ) <-> { N , K } e. ran I ) ) |
| 12 |
5 11
|
bitrd |
|- ( G e. USGraph -> ( N e. ( G NeighbVtx K ) <-> { N , K } e. ran I ) ) |
| 13 |
12
|
biimpa |
|- ( ( G e. USGraph /\ N e. ( G NeighbVtx K ) ) -> { N , K } e. ran I ) |
| 14 |
3 13
|
eqeltrrid |
|- ( ( G e. USGraph /\ N e. ( G NeighbVtx K ) ) -> { K , N } e. ran I ) |
| 15 |
|
f1ocnvfv2 |
|- ( ( I : dom I -1-1-onto-> ran I /\ { K , N } e. ran I ) -> ( I ` ( `' I ` { K , N } ) ) = { K , N } ) |
| 16 |
2 14 15
|
syl2an2r |
|- ( ( G e. USGraph /\ N e. ( G NeighbVtx K ) ) -> ( I ` ( `' I ` { K , N } ) ) = { K , N } ) |