Step |
Hyp |
Ref |
Expression |
1 |
|
uzinf.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
fveq2 |
|- ( M = if ( M e. ZZ , M , 0 ) -> ( ZZ>= ` M ) = ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) ) |
3 |
1 2
|
eqtrid |
|- ( M = if ( M e. ZZ , M , 0 ) -> Z = ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) ) |
4 |
3
|
breq1d |
|- ( M = if ( M e. ZZ , M , 0 ) -> ( Z ~~ _om <-> ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) ~~ _om ) ) |
5 |
|
omex |
|- _om e. _V |
6 |
|
fvex |
|- ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) e. _V |
7 |
|
0z |
|- 0 e. ZZ |
8 |
7
|
elimel |
|- if ( M e. ZZ , M , 0 ) e. ZZ |
9 |
|
eqid |
|- ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( M e. ZZ , M , 0 ) ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( M e. ZZ , M , 0 ) ) |` _om ) |
10 |
8 9
|
om2uzf1oi |
|- ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( M e. ZZ , M , 0 ) ) |` _om ) : _om -1-1-onto-> ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) |
11 |
|
f1oen2g |
|- ( ( _om e. _V /\ ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) e. _V /\ ( rec ( ( x e. _V |-> ( x + 1 ) ) , if ( M e. ZZ , M , 0 ) ) |` _om ) : _om -1-1-onto-> ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) ) -> _om ~~ ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) ) |
12 |
5 6 10 11
|
mp3an |
|- _om ~~ ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) |
13 |
12
|
ensymi |
|- ( ZZ>= ` if ( M e. ZZ , M , 0 ) ) ~~ _om |
14 |
4 13
|
dedth |
|- ( M e. ZZ -> Z ~~ _om ) |