Metamath Proof Explorer


Theorem uzinfi

Description: Extract the lower bound of an upper set of integers as its infimum. (Contributed by NM, 7-Oct-2005) (Revised by AV, 4-Sep-2020)

Ref Expression
Hypothesis uzinfi.1
|- M e. ZZ
Assertion uzinfi
|- inf ( ( ZZ>= ` M ) , RR , < ) = M

Proof

Step Hyp Ref Expression
1 uzinfi.1
 |-  M e. ZZ
2 ltso
 |-  < Or RR
3 2 a1i
 |-  ( M e. ZZ -> < Or RR )
4 zre
 |-  ( M e. ZZ -> M e. RR )
5 uzid
 |-  ( M e. ZZ -> M e. ( ZZ>= ` M ) )
6 eluz2
 |-  ( k e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ k e. ZZ /\ M <_ k ) )
7 4 adantr
 |-  ( ( M e. ZZ /\ k e. ZZ ) -> M e. RR )
8 zre
 |-  ( k e. ZZ -> k e. RR )
9 8 adantl
 |-  ( ( M e. ZZ /\ k e. ZZ ) -> k e. RR )
10 7 9 lenltd
 |-  ( ( M e. ZZ /\ k e. ZZ ) -> ( M <_ k <-> -. k < M ) )
11 10 biimp3a
 |-  ( ( M e. ZZ /\ k e. ZZ /\ M <_ k ) -> -. k < M )
12 11 a1d
 |-  ( ( M e. ZZ /\ k e. ZZ /\ M <_ k ) -> ( M e. ZZ -> -. k < M ) )
13 6 12 sylbi
 |-  ( k e. ( ZZ>= ` M ) -> ( M e. ZZ -> -. k < M ) )
14 13 impcom
 |-  ( ( M e. ZZ /\ k e. ( ZZ>= ` M ) ) -> -. k < M )
15 3 4 5 14 infmin
 |-  ( M e. ZZ -> inf ( ( ZZ>= ` M ) , RR , < ) = M )
16 1 15 ax-mp
 |-  inf ( ( ZZ>= ` M ) , RR , < ) = M