| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							om2uz.1 | 
							 |-  C e. ZZ  | 
						
						
							| 2 | 
							
								
							 | 
							om2uz.2 | 
							 |-  G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om )  | 
						
						
							| 3 | 
							
								
							 | 
							uzrdg.1 | 
							 |-  A e. _V  | 
						
						
							| 4 | 
							
								
							 | 
							uzrdg.2 | 
							 |-  R = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om )  | 
						
						
							| 5 | 
							
								1 2
							 | 
							om2uzf1oi | 
							 |-  G : _om -1-1-onto-> ( ZZ>= ` C )  | 
						
						
							| 6 | 
							
								
							 | 
							f1ocnvdm | 
							 |-  ( ( G : _om -1-1-onto-> ( ZZ>= ` C ) /\ B e. ( ZZ>= ` C ) ) -> ( `' G ` B ) e. _om )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							mpan | 
							 |-  ( B e. ( ZZ>= ` C ) -> ( `' G ` B ) e. _om )  | 
						
						
							| 8 | 
							
								1 2 3 4
							 | 
							om2uzrdg | 
							 |-  ( ( `' G ` B ) e. _om -> ( R ` ( `' G ` B ) ) = <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							syl | 
							 |-  ( B e. ( ZZ>= ` C ) -> ( R ` ( `' G ` B ) ) = <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. )  | 
						
						
							| 10 | 
							
								
							 | 
							f1ocnvfv2 | 
							 |-  ( ( G : _om -1-1-onto-> ( ZZ>= ` C ) /\ B e. ( ZZ>= ` C ) ) -> ( G ` ( `' G ` B ) ) = B )  | 
						
						
							| 11 | 
							
								5 10
							 | 
							mpan | 
							 |-  ( B e. ( ZZ>= ` C ) -> ( G ` ( `' G ` B ) ) = B )  | 
						
						
							| 12 | 
							
								11
							 | 
							opeq1d | 
							 |-  ( B e. ( ZZ>= ` C ) -> <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. = <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							eqtrd | 
							 |-  ( B e. ( ZZ>= ` C ) -> ( R ` ( `' G ` B ) ) = <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. )  | 
						
						
							| 14 | 
							
								
							 | 
							frfnom | 
							 |-  ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om  | 
						
						
							| 15 | 
							
								4
							 | 
							fneq1i | 
							 |-  ( R Fn _om <-> ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) Fn _om )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							mpbir | 
							 |-  R Fn _om  | 
						
						
							| 17 | 
							
								
							 | 
							fnfvelrn | 
							 |-  ( ( R Fn _om /\ ( `' G ` B ) e. _om ) -> ( R ` ( `' G ` B ) ) e. ran R )  | 
						
						
							| 18 | 
							
								16 7 17
							 | 
							sylancr | 
							 |-  ( B e. ( ZZ>= ` C ) -> ( R ` ( `' G ` B ) ) e. ran R )  | 
						
						
							| 19 | 
							
								13 18
							 | 
							eqeltrrd | 
							 |-  ( B e. ( ZZ>= ` C ) -> <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. e. ran R )  |