| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wess |  |-  ( B C_ A -> ( R We A -> R We B ) ) | 
						
							| 2 | 1 | impcom |  |-  ( ( R We A /\ B C_ A ) -> R We B ) | 
						
							| 3 |  | weso |  |-  ( R We B -> R Or B ) | 
						
							| 4 | 2 3 | syl |  |-  ( ( R We A /\ B C_ A ) -> R Or B ) | 
						
							| 5 |  | cnvso |  |-  ( R Or B <-> `' R Or B ) | 
						
							| 6 | 4 5 | sylib |  |-  ( ( R We A /\ B C_ A ) -> `' R Or B ) | 
						
							| 7 | 6 | 3ad2antr2 |  |-  ( ( R We A /\ ( B e. C /\ B C_ A /\ B =/= (/) ) ) -> `' R Or B ) | 
						
							| 8 |  | wefr |  |-  ( R We B -> R Fr B ) | 
						
							| 9 | 2 8 | syl |  |-  ( ( R We A /\ B C_ A ) -> R Fr B ) | 
						
							| 10 | 9 | 3ad2antr2 |  |-  ( ( R We A /\ ( B e. C /\ B C_ A /\ B =/= (/) ) ) -> R Fr B ) | 
						
							| 11 |  | ssidd |  |-  ( B C_ A -> B C_ B ) | 
						
							| 12 | 11 | 3anim2i |  |-  ( ( B e. C /\ B C_ A /\ B =/= (/) ) -> ( B e. C /\ B C_ B /\ B =/= (/) ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( R We A /\ ( B e. C /\ B C_ A /\ B =/= (/) ) ) -> ( B e. C /\ B C_ B /\ B =/= (/) ) ) | 
						
							| 14 |  | frinfm |  |-  ( ( R Fr B /\ ( B e. C /\ B C_ B /\ B =/= (/) ) ) -> E. x e. B ( A. y e. B -. x `' R y /\ A. y e. B ( y `' R x -> E. z e. B y `' R z ) ) ) | 
						
							| 15 | 10 13 14 | syl2anc |  |-  ( ( R We A /\ ( B e. C /\ B C_ A /\ B =/= (/) ) ) -> E. x e. B ( A. y e. B -. x `' R y /\ A. y e. B ( y `' R x -> E. z e. B y `' R z ) ) ) | 
						
							| 16 | 7 15 | jca |  |-  ( ( R We A /\ ( B e. C /\ B C_ A /\ B =/= (/) ) ) -> ( `' R Or B /\ E. x e. B ( A. y e. B -. x `' R y /\ A. y e. B ( y `' R x -> E. z e. B y `' R z ) ) ) ) |