Metamath Proof Explorer


Theorem welb

Description: A nonempty subset of a well-ordered set has a lower bound. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion welb RWeABCBABR-1OrBxByB¬xR-1yyByR-1xzByR-1z

Proof

Step Hyp Ref Expression
1 wess BARWeARWeB
2 1 impcom RWeABARWeB
3 weso RWeBROrB
4 2 3 syl RWeABAROrB
5 cnvso ROrBR-1OrB
6 4 5 sylib RWeABAR-1OrB
7 6 3ad2antr2 RWeABCBABR-1OrB
8 wefr RWeBRFrB
9 2 8 syl RWeABARFrB
10 9 3ad2antr2 RWeABCBABRFrB
11 ssidd BABB
12 11 3anim2i BCBABBCBBB
13 12 adantl RWeABCBABBCBBB
14 frinfm RFrBBCBBBxByB¬xR-1yyByR-1xzByR-1z
15 10 13 14 syl2anc RWeABCBABxByB¬xR-1yyByR-1xzByR-1z
16 7 15 jca RWeABCBABR-1OrBxByB¬xR-1yyByR-1xzByR-1z