Metamath Proof Explorer


Theorem frinfm

Description: A subset of a well-founded set has an infimum. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion frinfm RFrABCBABxAyB¬xR-1yyAyR-1xzByR-1z

Proof

Step Hyp Ref Expression
1 fri BCRFrABABxByB¬yRx
2 1 ancom1s RFrABCBABxByB¬yRx
3 2 exp43 RFrABCBABxByB¬yRx
4 3 3imp2 RFrABCBABxByB¬yRx
5 ssel2 BAxBxA
6 5 adantrr BAxByB¬yRxxA
7 vex xV
8 vex yV
9 7 8 brcnv xR-1yyRx
10 9 biimpi xR-1yyRx
11 10 con3i ¬yRx¬xR-1y
12 11 ralimi yB¬yRxyB¬xR-1y
13 12 ad2antll BAxByB¬yRxyB¬xR-1y
14 breq2 z=xyR-1zyR-1x
15 14 rspcev xByR-1xzByR-1z
16 15 ex xByR-1xzByR-1z
17 16 ralrimivw xByAyR-1xzByR-1z
18 17 ad2antrl BAxByB¬yRxyAyR-1xzByR-1z
19 6 13 18 jca32 BAxByB¬yRxxAyB¬xR-1yyAyR-1xzByR-1z
20 19 ex BAxByB¬yRxxAyB¬xR-1yyAyR-1xzByR-1z
21 20 reximdv2 BAxByB¬yRxxAyB¬xR-1yyAyR-1xzByR-1z
22 21 adantl RFrABAxByB¬yRxxAyB¬xR-1yyAyR-1xzByR-1z
23 22 3ad2antr2 RFrABCBABxByB¬yRxxAyB¬xR-1yyAyR-1xzByR-1z
24 4 23 mpd RFrABCBABxAyB¬xR-1yyAyR-1xzByR-1z