Description: Closed form of nfsbv . (Contributed by Wolf Lammen, 2-May-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | wl-nfsbtv | |- ( A. x F/ z ph -> F/ z [ y / x ] ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc4 | |- ( A. x F/ z ph -> [ y / x ] F/ z ph ) |
|
2 | sbnf | |- ( [ y / x ] F/ z ph <-> F/ z [ y / x ] ph ) |
|
3 | 1 2 | sylib | |- ( A. x F/ z ph -> F/ z [ y / x ] ph ) |