Metamath Proof Explorer


Theorem wl-nfsbtv

Description: Closed form of nfsbv . (Contributed by Wolf Lammen, 2-May-2025)

Ref Expression
Assertion wl-nfsbtv
|- ( A. x F/ z ph -> F/ z [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 stdpc4
 |-  ( A. x F/ z ph -> [ y / x ] F/ z ph )
2 sbnf
 |-  ( [ y / x ] F/ z ph <-> F/ z [ y / x ] ph )
3 1 2 sylib
 |-  ( A. x F/ z ph -> F/ z [ y / x ] ph )