Metamath Proof Explorer


Theorem wl-nfsbtv

Description: Closed form of nfsbv . (Contributed by Wolf Lammen, 2-May-2025)

Ref Expression
Assertion wl-nfsbtv ( ∀ 𝑥𝑧 𝜑 → Ⅎ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 stdpc4 ( ∀ 𝑥𝑧 𝜑 → [ 𝑦 / 𝑥 ] Ⅎ 𝑧 𝜑 )
2 sbnf ( [ 𝑦 / 𝑥 ] Ⅎ 𝑧 𝜑 ↔ Ⅎ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 )
3 1 2 sylib ( ∀ 𝑥𝑧 𝜑 → Ⅎ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 )