| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkiswwlks2lem.f |  |-  F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) ) | 
						
							| 2 | 1 | wlkiswwlks2lem1 |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( # ` F ) = ( ( # ` P ) - 1 ) ) | 
						
							| 3 |  | wrdf |  |-  ( P e. Word V -> P : ( 0 ..^ ( # ` P ) ) --> V ) | 
						
							| 4 |  | lencl |  |-  ( P e. Word V -> ( # ` P ) e. NN0 ) | 
						
							| 5 |  | nn0z |  |-  ( ( # ` P ) e. NN0 -> ( # ` P ) e. ZZ ) | 
						
							| 6 |  | fzoval |  |-  ( ( # ` P ) e. ZZ -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( ( # ` P ) - 1 ) ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( # ` P ) e. NN0 -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( ( # ` P ) - 1 ) ) ) | 
						
							| 8 |  | oveq2 |  |-  ( ( ( # ` P ) - 1 ) = ( # ` F ) -> ( 0 ... ( ( # ` P ) - 1 ) ) = ( 0 ... ( # ` F ) ) ) | 
						
							| 9 | 8 | eqcoms |  |-  ( ( # ` F ) = ( ( # ` P ) - 1 ) -> ( 0 ... ( ( # ` P ) - 1 ) ) = ( 0 ... ( # ` F ) ) ) | 
						
							| 10 | 7 9 | sylan9eq |  |-  ( ( ( # ` P ) e. NN0 /\ ( # ` F ) = ( ( # ` P ) - 1 ) ) -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( # ` F ) ) ) | 
						
							| 11 | 10 | feq2d |  |-  ( ( ( # ` P ) e. NN0 /\ ( # ` F ) = ( ( # ` P ) - 1 ) ) -> ( P : ( 0 ..^ ( # ` P ) ) --> V <-> P : ( 0 ... ( # ` F ) ) --> V ) ) | 
						
							| 12 | 11 | biimpcd |  |-  ( P : ( 0 ..^ ( # ` P ) ) --> V -> ( ( ( # ` P ) e. NN0 /\ ( # ` F ) = ( ( # ` P ) - 1 ) ) -> P : ( 0 ... ( # ` F ) ) --> V ) ) | 
						
							| 13 | 12 | expd |  |-  ( P : ( 0 ..^ ( # ` P ) ) --> V -> ( ( # ` P ) e. NN0 -> ( ( # ` F ) = ( ( # ` P ) - 1 ) -> P : ( 0 ... ( # ` F ) ) --> V ) ) ) | 
						
							| 14 | 3 4 13 | sylc |  |-  ( P e. Word V -> ( ( # ` F ) = ( ( # ` P ) - 1 ) -> P : ( 0 ... ( # ` F ) ) --> V ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( ( # ` F ) = ( ( # ` P ) - 1 ) -> P : ( 0 ... ( # ` F ) ) --> V ) ) | 
						
							| 16 | 2 15 | mpd |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> P : ( 0 ... ( # ` F ) ) --> V ) |