Metamath Proof Explorer


Theorem wlkiswwlks2lem3

Description: Lemma 3 for wlkiswwlks2 . (Contributed by Alexander van der Vekens, 20-Jul-2018)

Ref Expression
Hypothesis wlkiswwlks2lem.f
|- F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) )
Assertion wlkiswwlks2lem3
|- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> P : ( 0 ... ( # ` F ) ) --> V )

Proof

Step Hyp Ref Expression
1 wlkiswwlks2lem.f
 |-  F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) )
2 1 wlkiswwlks2lem1
 |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( # ` F ) = ( ( # ` P ) - 1 ) )
3 wrdf
 |-  ( P e. Word V -> P : ( 0 ..^ ( # ` P ) ) --> V )
4 lencl
 |-  ( P e. Word V -> ( # ` P ) e. NN0 )
5 nn0z
 |-  ( ( # ` P ) e. NN0 -> ( # ` P ) e. ZZ )
6 fzoval
 |-  ( ( # ` P ) e. ZZ -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( ( # ` P ) - 1 ) ) )
7 5 6 syl
 |-  ( ( # ` P ) e. NN0 -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( ( # ` P ) - 1 ) ) )
8 oveq2
 |-  ( ( ( # ` P ) - 1 ) = ( # ` F ) -> ( 0 ... ( ( # ` P ) - 1 ) ) = ( 0 ... ( # ` F ) ) )
9 8 eqcoms
 |-  ( ( # ` F ) = ( ( # ` P ) - 1 ) -> ( 0 ... ( ( # ` P ) - 1 ) ) = ( 0 ... ( # ` F ) ) )
10 7 9 sylan9eq
 |-  ( ( ( # ` P ) e. NN0 /\ ( # ` F ) = ( ( # ` P ) - 1 ) ) -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( # ` F ) ) )
11 10 feq2d
 |-  ( ( ( # ` P ) e. NN0 /\ ( # ` F ) = ( ( # ` P ) - 1 ) ) -> ( P : ( 0 ..^ ( # ` P ) ) --> V <-> P : ( 0 ... ( # ` F ) ) --> V ) )
12 11 biimpcd
 |-  ( P : ( 0 ..^ ( # ` P ) ) --> V -> ( ( ( # ` P ) e. NN0 /\ ( # ` F ) = ( ( # ` P ) - 1 ) ) -> P : ( 0 ... ( # ` F ) ) --> V ) )
13 12 expd
 |-  ( P : ( 0 ..^ ( # ` P ) ) --> V -> ( ( # ` P ) e. NN0 -> ( ( # ` F ) = ( ( # ` P ) - 1 ) -> P : ( 0 ... ( # ` F ) ) --> V ) ) )
14 3 4 13 sylc
 |-  ( P e. Word V -> ( ( # ` F ) = ( ( # ` P ) - 1 ) -> P : ( 0 ... ( # ` F ) ) --> V ) )
15 14 adantr
 |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( ( # ` F ) = ( ( # ` P ) - 1 ) -> P : ( 0 ... ( # ` F ) ) --> V ) )
16 2 15 mpd
 |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> P : ( 0 ... ( # ` F ) ) --> V )