| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkiswwlks2lem.f |  |-  F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) ) | 
						
							| 2 |  | wlkiswwlks2lem.e |  |-  E = ( iEdg ` G ) | 
						
							| 3 | 1 | wlkiswwlks2lem1 |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( # ` F ) = ( ( # ` P ) - 1 ) ) | 
						
							| 4 | 3 | 3adant1 |  |-  ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> ( # ` F ) = ( ( # ` P ) - 1 ) ) | 
						
							| 5 |  | lencl |  |-  ( P e. Word V -> ( # ` P ) e. NN0 ) | 
						
							| 6 | 5 | 3ad2ant2 |  |-  ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> ( # ` P ) e. NN0 ) | 
						
							| 7 | 1 | wlkiswwlks2lem2 |  |-  ( ( ( # ` P ) e. NN0 /\ i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( F ` i ) = ( `' E ` { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) | 
						
							| 8 | 6 7 | sylan |  |-  ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( F ` i ) = ( `' E ` { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) /\ { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) -> ( F ` i ) = ( `' E ` { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) /\ { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) -> ( E ` ( F ` i ) ) = ( E ` ( `' E ` { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) | 
						
							| 11 | 2 | uspgrf1oedg |  |-  ( G e. USPGraph -> E : dom E -1-1-onto-> ( Edg ` G ) ) | 
						
							| 12 | 2 | rneqi |  |-  ran E = ran ( iEdg ` G ) | 
						
							| 13 |  | edgval |  |-  ( Edg ` G ) = ran ( iEdg ` G ) | 
						
							| 14 | 12 13 | eqtr4i |  |-  ran E = ( Edg ` G ) | 
						
							| 15 |  | f1oeq3 |  |-  ( ran E = ( Edg ` G ) -> ( E : dom E -1-1-onto-> ran E <-> E : dom E -1-1-onto-> ( Edg ` G ) ) ) | 
						
							| 16 | 14 15 | ax-mp |  |-  ( E : dom E -1-1-onto-> ran E <-> E : dom E -1-1-onto-> ( Edg ` G ) ) | 
						
							| 17 | 11 16 | sylibr |  |-  ( G e. USPGraph -> E : dom E -1-1-onto-> ran E ) | 
						
							| 18 | 17 | 3ad2ant1 |  |-  ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> E : dom E -1-1-onto-> ran E ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> E : dom E -1-1-onto-> ran E ) | 
						
							| 20 |  | f1ocnvfv2 |  |-  ( ( E : dom E -1-1-onto-> ran E /\ { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) -> ( E ` ( `' E ` { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) | 
						
							| 21 | 19 20 | sylan |  |-  ( ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) /\ { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) -> ( E ` ( `' E ` { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) | 
						
							| 22 | 10 21 | eqtrd |  |-  ( ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) /\ { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) -> ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) | 
						
							| 23 | 22 | ex |  |-  ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) | 
						
							| 24 | 23 | ralimdva |  |-  ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) | 
						
							| 25 |  | oveq2 |  |-  ( ( # ` F ) = ( ( # ` P ) - 1 ) -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) ) | 
						
							| 26 | 25 | raleqdv |  |-  ( ( # ` F ) = ( ( # ` P ) - 1 ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) | 
						
							| 27 | 26 | imbi2d |  |-  ( ( # ` F ) = ( ( # ` P ) - 1 ) -> ( ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) <-> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) | 
						
							| 28 | 24 27 | imbitrrid |  |-  ( ( # ` F ) = ( ( # ` P ) - 1 ) -> ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) | 
						
							| 29 | 4 28 | mpcom |  |-  ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |