| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkiswwlks2lem.f | ⊢ 𝐹  =  ( 𝑥  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ↦  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) } ) ) | 
						
							| 2 |  | wlkiswwlks2lem.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 | 1 | wlkiswwlks2lem1 | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) ) | 
						
							| 4 | 3 | 3adant1 | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) ) | 
						
							| 5 |  | lencl | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( ♯ ‘ 𝑃 )  ∈  ℕ0 ) | 
						
							| 6 | 5 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ♯ ‘ 𝑃 )  ∈  ℕ0 ) | 
						
							| 7 | 1 | wlkiswwlks2lem2 | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  →  ( 𝐹 ‘ 𝑖 )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 8 | 6 7 | sylan | ⊢ ( ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  →  ( 𝐹 ‘ 𝑖 )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  ∧  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸 )  →  ( 𝐹 ‘ 𝑖 )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( ( ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  ∧  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸 )  →  ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  ( 𝐸 ‘ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) ) | 
						
							| 11 | 2 | uspgrf1oedg | ⊢ ( 𝐺  ∈  USPGraph  →  𝐸 : dom  𝐸 –1-1-onto→ ( Edg ‘ 𝐺 ) ) | 
						
							| 12 | 2 | rneqi | ⊢ ran  𝐸  =  ran  ( iEdg ‘ 𝐺 ) | 
						
							| 13 |  | edgval | ⊢ ( Edg ‘ 𝐺 )  =  ran  ( iEdg ‘ 𝐺 ) | 
						
							| 14 | 12 13 | eqtr4i | ⊢ ran  𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 15 |  | f1oeq3 | ⊢ ( ran  𝐸  =  ( Edg ‘ 𝐺 )  →  ( 𝐸 : dom  𝐸 –1-1-onto→ ran  𝐸  ↔  𝐸 : dom  𝐸 –1-1-onto→ ( Edg ‘ 𝐺 ) ) ) | 
						
							| 16 | 14 15 | ax-mp | ⊢ ( 𝐸 : dom  𝐸 –1-1-onto→ ran  𝐸  ↔  𝐸 : dom  𝐸 –1-1-onto→ ( Edg ‘ 𝐺 ) ) | 
						
							| 17 | 11 16 | sylibr | ⊢ ( 𝐺  ∈  USPGraph  →  𝐸 : dom  𝐸 –1-1-onto→ ran  𝐸 ) | 
						
							| 18 | 17 | 3ad2ant1 | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  𝐸 : dom  𝐸 –1-1-onto→ ran  𝐸 ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  →  𝐸 : dom  𝐸 –1-1-onto→ ran  𝐸 ) | 
						
							| 20 |  | f1ocnvfv2 | ⊢ ( ( 𝐸 : dom  𝐸 –1-1-onto→ ran  𝐸  ∧  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸 )  →  ( 𝐸 ‘ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) | 
						
							| 21 | 19 20 | sylan | ⊢ ( ( ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  ∧  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸 )  →  ( 𝐸 ‘ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) | 
						
							| 22 | 10 21 | eqtrd | ⊢ ( ( ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  ∧  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸 )  →  ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) | 
						
							| 23 | 22 | ex | ⊢ ( ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  →  ( { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  →  ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 24 | 23 | ralimdva | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  →  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 25 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ 𝑃 )  −  1 )  →  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  =  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) | 
						
							| 26 | 25 | raleqdv | ⊢ ( ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ 𝑃 )  −  1 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) | 
						
							| 27 | 26 | imbi2d | ⊢ ( ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ 𝑃 )  −  1 )  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ↔  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  →  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) ) | 
						
							| 28 | 24 27 | imbitrrid | ⊢ ( ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ 𝑃 )  −  1 )  →  ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) ) | 
						
							| 29 | 4 28 | mpcom | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) ) |