| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkiswwlks2lem.f | ⊢ 𝐹  =  ( 𝑥  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ↦  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) } ) ) | 
						
							| 2 | 1 | wlkiswwlks2lem1 | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) ) | 
						
							| 3 |  | wrdf | ⊢ ( 𝑃  ∈  Word  𝑉  →  𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ 𝑉 ) | 
						
							| 4 |  | lencl | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( ♯ ‘ 𝑃 )  ∈  ℕ0 ) | 
						
							| 5 |  | nn0z | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ♯ ‘ 𝑃 )  ∈  ℤ ) | 
						
							| 6 |  | fzoval | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℤ  →  ( 0 ..^ ( ♯ ‘ 𝑃 ) )  =  ( 0 ... ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( 0 ..^ ( ♯ ‘ 𝑃 ) )  =  ( 0 ... ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) | 
						
							| 8 |  | oveq2 | ⊢ ( ( ( ♯ ‘ 𝑃 )  −  1 )  =  ( ♯ ‘ 𝐹 )  →  ( 0 ... ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 9 | 8 | eqcoms | ⊢ ( ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ 𝑃 )  −  1 )  →  ( 0 ... ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 10 | 7 9 | sylan9eq | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) )  →  ( 0 ..^ ( ♯ ‘ 𝑃 ) )  =  ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 11 | 10 | feq2d | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) )  →  ( 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ 𝑉  ↔  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) | 
						
							| 12 | 11 | biimpcd | ⊢ ( 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ 𝑉  →  ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) )  →  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) | 
						
							| 13 | 12 | expd | ⊢ ( 𝑃 : ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ⟶ 𝑉  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ 𝑃 )  −  1 )  →  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) ) | 
						
							| 14 | 3 4 13 | sylc | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ 𝑃 )  −  1 )  →  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ 𝑃 )  −  1 )  →  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) | 
						
							| 16 | 2 15 | mpd | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |