| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( W e. Word A /\ W =/= (/) ) -> W e. Word A ) | 
						
							| 2 |  | wrdfin |  |-  ( W e. Word A -> W e. Fin ) | 
						
							| 3 |  | 1elfz0hash |  |-  ( ( W e. Fin /\ W =/= (/) ) -> 1 e. ( 0 ... ( # ` W ) ) ) | 
						
							| 4 | 2 3 | sylan |  |-  ( ( W e. Word A /\ W =/= (/) ) -> 1 e. ( 0 ... ( # ` W ) ) ) | 
						
							| 5 |  | lennncl |  |-  ( ( W e. Word A /\ W =/= (/) ) -> ( # ` W ) e. NN ) | 
						
							| 6 | 5 | nnnn0d |  |-  ( ( W e. Word A /\ W =/= (/) ) -> ( # ` W ) e. NN0 ) | 
						
							| 7 |  | eluzfz2 |  |-  ( ( # ` W ) e. ( ZZ>= ` 0 ) -> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 8 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 9 | 7 8 | eleq2s |  |-  ( ( # ` W ) e. NN0 -> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 10 | 6 9 | syl |  |-  ( ( W e. Word A /\ W =/= (/) ) -> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 11 |  | ccatpfx |  |-  ( ( W e. Word A /\ 1 e. ( 0 ... ( # ` W ) ) /\ ( # ` W ) e. ( 0 ... ( # ` W ) ) ) -> ( ( W prefix 1 ) ++ ( W substr <. 1 , ( # ` W ) >. ) ) = ( W prefix ( # ` W ) ) ) | 
						
							| 12 | 1 4 10 11 | syl3anc |  |-  ( ( W e. Word A /\ W =/= (/) ) -> ( ( W prefix 1 ) ++ ( W substr <. 1 , ( # ` W ) >. ) ) = ( W prefix ( # ` W ) ) ) | 
						
							| 13 |  | pfx1 |  |-  ( ( W e. Word A /\ W =/= (/) ) -> ( W prefix 1 ) = <" ( W ` 0 ) "> ) | 
						
							| 14 | 13 | oveq1d |  |-  ( ( W e. Word A /\ W =/= (/) ) -> ( ( W prefix 1 ) ++ ( W substr <. 1 , ( # ` W ) >. ) ) = ( <" ( W ` 0 ) "> ++ ( W substr <. 1 , ( # ` W ) >. ) ) ) | 
						
							| 15 |  | pfxid |  |-  ( W e. Word A -> ( W prefix ( # ` W ) ) = W ) | 
						
							| 16 | 15 | adantr |  |-  ( ( W e. Word A /\ W =/= (/) ) -> ( W prefix ( # ` W ) ) = W ) | 
						
							| 17 | 12 14 16 | 3eqtr3rd |  |-  ( ( W e. Word A /\ W =/= (/) ) -> W = ( <" ( W ` 0 ) "> ++ ( W substr <. 1 , ( # ` W ) >. ) ) ) |