| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pssss |  |-  ( A C. B -> A C_ B ) | 
						
							| 2 |  | pssss |  |-  ( C C. D -> C C_ D ) | 
						
							| 3 |  | xpss12 |  |-  ( ( A C_ B /\ C C_ D ) -> ( A X. C ) C_ ( B X. D ) ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( A C. B /\ C C. D ) -> ( A X. C ) C_ ( B X. D ) ) | 
						
							| 5 |  | simpl |  |-  ( ( A C. B /\ C C. D ) -> A C. B ) | 
						
							| 6 |  | pssne |  |-  ( A C. B -> A =/= B ) | 
						
							| 7 | 6 | necomd |  |-  ( A C. B -> B =/= A ) | 
						
							| 8 |  | neneq |  |-  ( B =/= A -> -. B = A ) | 
						
							| 9 | 8 | intnanrd |  |-  ( B =/= A -> -. ( B = A /\ D = C ) ) | 
						
							| 10 | 5 7 9 | 3syl |  |-  ( ( A C. B /\ C C. D ) -> -. ( B = A /\ D = C ) ) | 
						
							| 11 |  | pssn0 |  |-  ( A C. B -> B =/= (/) ) | 
						
							| 12 |  | pssn0 |  |-  ( C C. D -> D =/= (/) ) | 
						
							| 13 |  | xp11 |  |-  ( ( B =/= (/) /\ D =/= (/) ) -> ( ( B X. D ) = ( A X. C ) <-> ( B = A /\ D = C ) ) ) | 
						
							| 14 | 11 12 13 | syl2an |  |-  ( ( A C. B /\ C C. D ) -> ( ( B X. D ) = ( A X. C ) <-> ( B = A /\ D = C ) ) ) | 
						
							| 15 | 10 14 | mtbird |  |-  ( ( A C. B /\ C C. D ) -> -. ( B X. D ) = ( A X. C ) ) | 
						
							| 16 |  | neqne |  |-  ( -. ( B X. D ) = ( A X. C ) -> ( B X. D ) =/= ( A X. C ) ) | 
						
							| 17 | 16 | necomd |  |-  ( -. ( B X. D ) = ( A X. C ) -> ( A X. C ) =/= ( B X. D ) ) | 
						
							| 18 | 15 17 | syl |  |-  ( ( A C. B /\ C C. D ) -> ( A X. C ) =/= ( B X. D ) ) | 
						
							| 19 |  | df-pss |  |-  ( ( A X. C ) C. ( B X. D ) <-> ( ( A X. C ) C_ ( B X. D ) /\ ( A X. C ) =/= ( B X. D ) ) ) | 
						
							| 20 | 4 18 19 | sylanbrc |  |-  ( ( A C. B /\ C C. D ) -> ( A X. C ) C. ( B X. D ) ) |