Metamath Proof Explorer


Theorem xppss12

Description: Proper subset theorem for Cartesian product. (Contributed by Steven Nguyen, 17-Jul-2022)

Ref Expression
Assertion xppss12 A B C D A × C B × D

Proof

Step Hyp Ref Expression
1 pssss A B A B
2 pssss C D C D
3 xpss12 A B C D A × C B × D
4 1 2 3 syl2an A B C D A × C B × D
5 simpl A B C D A B
6 pssne A B A B
7 6 necomd A B B A
8 neneq B A ¬ B = A
9 8 intnanrd B A ¬ B = A D = C
10 5 7 9 3syl A B C D ¬ B = A D = C
11 pssn0 A B B
12 pssn0 C D D
13 xp11 B D B × D = A × C B = A D = C
14 11 12 13 syl2an A B C D B × D = A × C B = A D = C
15 10 14 mtbird A B C D ¬ B × D = A × C
16 neqne ¬ B × D = A × C B × D A × C
17 16 necomd ¬ B × D = A × C A × C B × D
18 15 17 syl A B C D A × C B × D
19 df-pss A × C B × D A × C B × D A × C B × D
20 4 18 19 sylanbrc A B C D A × C B × D