| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pssss | ⊢ ( 𝐴  ⊊  𝐵  →  𝐴  ⊆  𝐵 ) | 
						
							| 2 |  | pssss | ⊢ ( 𝐶  ⊊  𝐷  →  𝐶  ⊆  𝐷 ) | 
						
							| 3 |  | xpss12 | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐶  ⊆  𝐷 )  →  ( 𝐴  ×  𝐶 )  ⊆  ( 𝐵  ×  𝐷 ) ) | 
						
							| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴  ⊊  𝐵  ∧  𝐶  ⊊  𝐷 )  →  ( 𝐴  ×  𝐶 )  ⊆  ( 𝐵  ×  𝐷 ) ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝐴  ⊊  𝐵  ∧  𝐶  ⊊  𝐷 )  →  𝐴  ⊊  𝐵 ) | 
						
							| 6 |  | pssne | ⊢ ( 𝐴  ⊊  𝐵  →  𝐴  ≠  𝐵 ) | 
						
							| 7 | 6 | necomd | ⊢ ( 𝐴  ⊊  𝐵  →  𝐵  ≠  𝐴 ) | 
						
							| 8 |  | neneq | ⊢ ( 𝐵  ≠  𝐴  →  ¬  𝐵  =  𝐴 ) | 
						
							| 9 | 8 | intnanrd | ⊢ ( 𝐵  ≠  𝐴  →  ¬  ( 𝐵  =  𝐴  ∧  𝐷  =  𝐶 ) ) | 
						
							| 10 | 5 7 9 | 3syl | ⊢ ( ( 𝐴  ⊊  𝐵  ∧  𝐶  ⊊  𝐷 )  →  ¬  ( 𝐵  =  𝐴  ∧  𝐷  =  𝐶 ) ) | 
						
							| 11 |  | pssn0 | ⊢ ( 𝐴  ⊊  𝐵  →  𝐵  ≠  ∅ ) | 
						
							| 12 |  | pssn0 | ⊢ ( 𝐶  ⊊  𝐷  →  𝐷  ≠  ∅ ) | 
						
							| 13 |  | xp11 | ⊢ ( ( 𝐵  ≠  ∅  ∧  𝐷  ≠  ∅ )  →  ( ( 𝐵  ×  𝐷 )  =  ( 𝐴  ×  𝐶 )  ↔  ( 𝐵  =  𝐴  ∧  𝐷  =  𝐶 ) ) ) | 
						
							| 14 | 11 12 13 | syl2an | ⊢ ( ( 𝐴  ⊊  𝐵  ∧  𝐶  ⊊  𝐷 )  →  ( ( 𝐵  ×  𝐷 )  =  ( 𝐴  ×  𝐶 )  ↔  ( 𝐵  =  𝐴  ∧  𝐷  =  𝐶 ) ) ) | 
						
							| 15 | 10 14 | mtbird | ⊢ ( ( 𝐴  ⊊  𝐵  ∧  𝐶  ⊊  𝐷 )  →  ¬  ( 𝐵  ×  𝐷 )  =  ( 𝐴  ×  𝐶 ) ) | 
						
							| 16 |  | neqne | ⊢ ( ¬  ( 𝐵  ×  𝐷 )  =  ( 𝐴  ×  𝐶 )  →  ( 𝐵  ×  𝐷 )  ≠  ( 𝐴  ×  𝐶 ) ) | 
						
							| 17 | 16 | necomd | ⊢ ( ¬  ( 𝐵  ×  𝐷 )  =  ( 𝐴  ×  𝐶 )  →  ( 𝐴  ×  𝐶 )  ≠  ( 𝐵  ×  𝐷 ) ) | 
						
							| 18 | 15 17 | syl | ⊢ ( ( 𝐴  ⊊  𝐵  ∧  𝐶  ⊊  𝐷 )  →  ( 𝐴  ×  𝐶 )  ≠  ( 𝐵  ×  𝐷 ) ) | 
						
							| 19 |  | df-pss | ⊢ ( ( 𝐴  ×  𝐶 )  ⊊  ( 𝐵  ×  𝐷 )  ↔  ( ( 𝐴  ×  𝐶 )  ⊆  ( 𝐵  ×  𝐷 )  ∧  ( 𝐴  ×  𝐶 )  ≠  ( 𝐵  ×  𝐷 ) ) ) | 
						
							| 20 | 4 18 19 | sylanbrc | ⊢ ( ( 𝐴  ⊊  𝐵  ∧  𝐶  ⊊  𝐷 )  →  ( 𝐴  ×  𝐶 )  ⊊  ( 𝐵  ×  𝐷 ) ) |