Metamath Proof Explorer


Theorem xppss12

Description: Proper subset theorem for Cartesian product. (Contributed by Steven Nguyen, 17-Jul-2022)

Ref Expression
Assertion xppss12 ( ( 𝐴𝐵𝐶𝐷 ) → ( 𝐴 × 𝐶 ) ⊊ ( 𝐵 × 𝐷 ) )

Proof

Step Hyp Ref Expression
1 pssss ( 𝐴𝐵𝐴𝐵 )
2 pssss ( 𝐶𝐷𝐶𝐷 )
3 xpss12 ( ( 𝐴𝐵𝐶𝐷 ) → ( 𝐴 × 𝐶 ) ⊆ ( 𝐵 × 𝐷 ) )
4 1 2 3 syl2an ( ( 𝐴𝐵𝐶𝐷 ) → ( 𝐴 × 𝐶 ) ⊆ ( 𝐵 × 𝐷 ) )
5 simpl ( ( 𝐴𝐵𝐶𝐷 ) → 𝐴𝐵 )
6 pssne ( 𝐴𝐵𝐴𝐵 )
7 6 necomd ( 𝐴𝐵𝐵𝐴 )
8 neneq ( 𝐵𝐴 → ¬ 𝐵 = 𝐴 )
9 8 intnanrd ( 𝐵𝐴 → ¬ ( 𝐵 = 𝐴𝐷 = 𝐶 ) )
10 5 7 9 3syl ( ( 𝐴𝐵𝐶𝐷 ) → ¬ ( 𝐵 = 𝐴𝐷 = 𝐶 ) )
11 pssn0 ( 𝐴𝐵𝐵 ≠ ∅ )
12 pssn0 ( 𝐶𝐷𝐷 ≠ ∅ )
13 xp11 ( ( 𝐵 ≠ ∅ ∧ 𝐷 ≠ ∅ ) → ( ( 𝐵 × 𝐷 ) = ( 𝐴 × 𝐶 ) ↔ ( 𝐵 = 𝐴𝐷 = 𝐶 ) ) )
14 11 12 13 syl2an ( ( 𝐴𝐵𝐶𝐷 ) → ( ( 𝐵 × 𝐷 ) = ( 𝐴 × 𝐶 ) ↔ ( 𝐵 = 𝐴𝐷 = 𝐶 ) ) )
15 10 14 mtbird ( ( 𝐴𝐵𝐶𝐷 ) → ¬ ( 𝐵 × 𝐷 ) = ( 𝐴 × 𝐶 ) )
16 neqne ( ¬ ( 𝐵 × 𝐷 ) = ( 𝐴 × 𝐶 ) → ( 𝐵 × 𝐷 ) ≠ ( 𝐴 × 𝐶 ) )
17 16 necomd ( ¬ ( 𝐵 × 𝐷 ) = ( 𝐴 × 𝐶 ) → ( 𝐴 × 𝐶 ) ≠ ( 𝐵 × 𝐷 ) )
18 15 17 syl ( ( 𝐴𝐵𝐶𝐷 ) → ( 𝐴 × 𝐶 ) ≠ ( 𝐵 × 𝐷 ) )
19 df-pss ( ( 𝐴 × 𝐶 ) ⊊ ( 𝐵 × 𝐷 ) ↔ ( ( 𝐴 × 𝐶 ) ⊆ ( 𝐵 × 𝐷 ) ∧ ( 𝐴 × 𝐶 ) ≠ ( 𝐵 × 𝐷 ) ) )
20 4 18 19 sylanbrc ( ( 𝐴𝐵𝐶𝐷 ) → ( 𝐴 × 𝐶 ) ⊊ ( 𝐵 × 𝐷 ) )