| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpssca.t |
|- T = ( R Xs. S ) |
| 2 |
|
xpssca.g |
|- G = ( Scalar ` R ) |
| 3 |
|
xpssca.1 |
|- ( ph -> R e. V ) |
| 4 |
|
xpssca.2 |
|- ( ph -> S e. W ) |
| 5 |
|
eqid |
|- ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) |
| 6 |
2
|
fvexi |
|- G e. _V |
| 7 |
6
|
a1i |
|- ( ph -> G e. _V ) |
| 8 |
|
prex |
|- { <. (/) , R >. , <. 1o , S >. } e. _V |
| 9 |
8
|
a1i |
|- ( ph -> { <. (/) , R >. , <. 1o , S >. } e. _V ) |
| 10 |
5 7 9
|
prdssca |
|- ( ph -> G = ( Scalar ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 11 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 12 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 13 |
|
eqid |
|- ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) |
| 14 |
1 11 12 3 4 13 2 5
|
xpsval |
|- ( ph -> T = ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 15 |
1 11 12 3 4 13 2 5
|
xpsrnbas |
|- ( ph -> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 16 |
13
|
xpsff1o2 |
|- ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) |
| 17 |
|
f1ocnv |
|- ( ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
| 18 |
16 17
|
mp1i |
|- ( ph -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
| 19 |
|
f1ofo |
|- ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
| 20 |
18 19
|
syl |
|- ( ph -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
| 21 |
|
ovexd |
|- ( ph -> ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. _V ) |
| 22 |
|
eqid |
|- ( Scalar ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( Scalar ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |
| 23 |
14 15 20 21 22
|
imassca |
|- ( ph -> ( Scalar ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( Scalar ` T ) ) |
| 24 |
10 23
|
eqtrd |
|- ( ph -> G = ( Scalar ` T ) ) |