| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0infssd.1 |
|- ( ph -> C C_ B ) |
| 2 |
|
xrge0infssd.2 |
|- ( ph -> B C_ ( 0 [,] +oo ) ) |
| 3 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 4 |
|
xrltso |
|- < Or RR* |
| 5 |
|
soss |
|- ( ( 0 [,] +oo ) C_ RR* -> ( < Or RR* -> < Or ( 0 [,] +oo ) ) ) |
| 6 |
3 4 5
|
mp2 |
|- < Or ( 0 [,] +oo ) |
| 7 |
6
|
a1i |
|- ( ph -> < Or ( 0 [,] +oo ) ) |
| 8 |
|
xrge0infss |
|- ( B C_ ( 0 [,] +oo ) -> E. x e. ( 0 [,] +oo ) ( A. y e. B -. y < x /\ A. y e. ( 0 [,] +oo ) ( x < y -> E. z e. B z < y ) ) ) |
| 9 |
2 8
|
syl |
|- ( ph -> E. x e. ( 0 [,] +oo ) ( A. y e. B -. y < x /\ A. y e. ( 0 [,] +oo ) ( x < y -> E. z e. B z < y ) ) ) |
| 10 |
7 9
|
infcl |
|- ( ph -> inf ( B , ( 0 [,] +oo ) , < ) e. ( 0 [,] +oo ) ) |
| 11 |
3 10
|
sselid |
|- ( ph -> inf ( B , ( 0 [,] +oo ) , < ) e. RR* ) |
| 12 |
1 2
|
sstrd |
|- ( ph -> C C_ ( 0 [,] +oo ) ) |
| 13 |
|
xrge0infss |
|- ( C C_ ( 0 [,] +oo ) -> E. x e. ( 0 [,] +oo ) ( A. y e. C -. y < x /\ A. y e. ( 0 [,] +oo ) ( x < y -> E. z e. C z < y ) ) ) |
| 14 |
12 13
|
syl |
|- ( ph -> E. x e. ( 0 [,] +oo ) ( A. y e. C -. y < x /\ A. y e. ( 0 [,] +oo ) ( x < y -> E. z e. C z < y ) ) ) |
| 15 |
7 14
|
infcl |
|- ( ph -> inf ( C , ( 0 [,] +oo ) , < ) e. ( 0 [,] +oo ) ) |
| 16 |
3 15
|
sselid |
|- ( ph -> inf ( C , ( 0 [,] +oo ) , < ) e. RR* ) |
| 17 |
7 1 14 9
|
infssd |
|- ( ph -> -. inf ( C , ( 0 [,] +oo ) , < ) < inf ( B , ( 0 [,] +oo ) , < ) ) |
| 18 |
11 16 17
|
xrnltled |
|- ( ph -> inf ( B , ( 0 [,] +oo ) , < ) <_ inf ( C , ( 0 [,] +oo ) , < ) ) |