Metamath Proof Explorer


Theorem xrge0infssd

Description: Inequality deduction for infimum of a nonnegative extended real subset. (Contributed by Thierry Arnoux, 16-Sep-2019) (Revised by AV, 4-Oct-2020)

Ref Expression
Hypotheses xrge0infssd.1 φ C B
xrge0infssd.2 φ B 0 +∞
Assertion xrge0infssd φ sup B 0 +∞ < sup C 0 +∞ <

Proof

Step Hyp Ref Expression
1 xrge0infssd.1 φ C B
2 xrge0infssd.2 φ B 0 +∞
3 iccssxr 0 +∞ *
4 xrltso < Or *
5 soss 0 +∞ * < Or * < Or 0 +∞
6 3 4 5 mp2 < Or 0 +∞
7 6 a1i φ < Or 0 +∞
8 xrge0infss B 0 +∞ x 0 +∞ y B ¬ y < x y 0 +∞ x < y z B z < y
9 2 8 syl φ x 0 +∞ y B ¬ y < x y 0 +∞ x < y z B z < y
10 7 9 infcl φ sup B 0 +∞ < 0 +∞
11 3 10 sselid φ sup B 0 +∞ < *
12 1 2 sstrd φ C 0 +∞
13 xrge0infss C 0 +∞ x 0 +∞ y C ¬ y < x y 0 +∞ x < y z C z < y
14 12 13 syl φ x 0 +∞ y C ¬ y < x y 0 +∞ x < y z C z < y
15 7 14 infcl φ sup C 0 +∞ < 0 +∞
16 3 15 sselid φ sup C 0 +∞ < *
17 7 1 14 9 infssd φ ¬ sup C 0 +∞ < < sup B 0 +∞ <
18 11 16 17 xrnltled φ sup B 0 +∞ < sup C 0 +∞ <