Metamath Proof Explorer


Theorem xrge0addcld

Description: Nonnegative extended reals are closed under addition. (Contributed by Thierry Arnoux, 16-Sep-2019)

Ref Expression
Hypotheses xrge0addcld.a φA0+∞
xrge0addcld.b φB0+∞
Assertion xrge0addcld φA+𝑒B0+∞

Proof

Step Hyp Ref Expression
1 xrge0addcld.a φA0+∞
2 xrge0addcld.b φB0+∞
3 elxrge0 A0+∞A*0A
4 1 3 sylib φA*0A
5 4 simpld φA*
6 elxrge0 B0+∞B*0B
7 2 6 sylib φB*0B
8 7 simpld φB*
9 5 8 xaddcld φA+𝑒B*
10 4 simprd φ0A
11 7 simprd φ0B
12 xaddge0 A*B*0A0B0A+𝑒B
13 5 8 10 11 12 syl22anc φ0A+𝑒B
14 elxrge0 A+𝑒B0+∞A+𝑒B*0A+𝑒B
15 9 13 14 sylanbrc φA+𝑒B0+∞