Metamath Proof Explorer


Theorem xrge0addcld

Description: Nonnegative extended reals are closed under addition. (Contributed by Thierry Arnoux, 16-Sep-2019)

Ref Expression
Hypotheses xrge0addcld.a φ A 0 +∞
xrge0addcld.b φ B 0 +∞
Assertion xrge0addcld φ A + 𝑒 B 0 +∞

Proof

Step Hyp Ref Expression
1 xrge0addcld.a φ A 0 +∞
2 xrge0addcld.b φ B 0 +∞
3 elxrge0 A 0 +∞ A * 0 A
4 1 3 sylib φ A * 0 A
5 4 simpld φ A *
6 elxrge0 B 0 +∞ B * 0 B
7 2 6 sylib φ B * 0 B
8 7 simpld φ B *
9 5 8 xaddcld φ A + 𝑒 B *
10 4 simprd φ 0 A
11 7 simprd φ 0 B
12 xaddge0 A * B * 0 A 0 B 0 A + 𝑒 B
13 5 8 10 11 12 syl22anc φ 0 A + 𝑒 B
14 elxrge0 A + 𝑒 B 0 +∞ A + 𝑒 B * 0 A + 𝑒 B
15 9 13 14 sylanbrc φ A + 𝑒 B 0 +∞