| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0addcld.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 2 |
|
xrge0addcld.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 3 |
|
elxrge0 |
⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ) |
| 4 |
1 3
|
sylib |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ) |
| 5 |
4
|
simpld |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 6 |
|
elxrge0 |
⊢ ( 𝐵 ∈ ( 0 [,] +∞ ) ↔ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ) |
| 7 |
2 6
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ) |
| 8 |
7
|
simpld |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 9 |
5 8
|
xaddcld |
⊢ ( 𝜑 → ( 𝐴 +𝑒 𝐵 ) ∈ ℝ* ) |
| 10 |
4
|
simprd |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| 11 |
7
|
simprd |
⊢ ( 𝜑 → 0 ≤ 𝐵 ) |
| 12 |
|
xaddge0 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐵 ) ) → 0 ≤ ( 𝐴 +𝑒 𝐵 ) ) |
| 13 |
5 8 10 11 12
|
syl22anc |
⊢ ( 𝜑 → 0 ≤ ( 𝐴 +𝑒 𝐵 ) ) |
| 14 |
|
elxrge0 |
⊢ ( ( 𝐴 +𝑒 𝐵 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐴 +𝑒 𝐵 ) ∈ ℝ* ∧ 0 ≤ ( 𝐴 +𝑒 𝐵 ) ) ) |
| 15 |
9 13 14
|
sylanbrc |
⊢ ( 𝜑 → ( 𝐴 +𝑒 𝐵 ) ∈ ( 0 [,] +∞ ) ) |