| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0subcld.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 2 |
|
xrge0subcld.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 3 |
|
xrge0subcld.c |
⊢ ( 𝜑 → 𝐵 ≤ 𝐴 ) |
| 4 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 5 |
4 1
|
sselid |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 6 |
4 2
|
sselid |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 7 |
6
|
xnegcld |
⊢ ( 𝜑 → -𝑒 𝐵 ∈ ℝ* ) |
| 8 |
5 7
|
xaddcld |
⊢ ( 𝜑 → ( 𝐴 +𝑒 -𝑒 𝐵 ) ∈ ℝ* ) |
| 9 |
|
xsubge0 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 0 ≤ ( 𝐴 +𝑒 -𝑒 𝐵 ) ↔ 𝐵 ≤ 𝐴 ) ) |
| 10 |
5 6 9
|
syl2anc |
⊢ ( 𝜑 → ( 0 ≤ ( 𝐴 +𝑒 -𝑒 𝐵 ) ↔ 𝐵 ≤ 𝐴 ) ) |
| 11 |
3 10
|
mpbird |
⊢ ( 𝜑 → 0 ≤ ( 𝐴 +𝑒 -𝑒 𝐵 ) ) |
| 12 |
8 11
|
jca |
⊢ ( 𝜑 → ( ( 𝐴 +𝑒 -𝑒 𝐵 ) ∈ ℝ* ∧ 0 ≤ ( 𝐴 +𝑒 -𝑒 𝐵 ) ) ) |
| 13 |
|
elxrge0 |
⊢ ( ( 𝐴 +𝑒 -𝑒 𝐵 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐴 +𝑒 -𝑒 𝐵 ) ∈ ℝ* ∧ 0 ≤ ( 𝐴 +𝑒 -𝑒 𝐵 ) ) ) |
| 14 |
12 13
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 +𝑒 -𝑒 𝐵 ) ∈ ( 0 [,] +∞ ) ) |