| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0subcld.a |
|- ( ph -> A e. ( 0 [,] +oo ) ) |
| 2 |
|
xrge0subcld.b |
|- ( ph -> B e. ( 0 [,] +oo ) ) |
| 3 |
|
xrge0subcld.c |
|- ( ph -> B <_ A ) |
| 4 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 5 |
4 1
|
sselid |
|- ( ph -> A e. RR* ) |
| 6 |
4 2
|
sselid |
|- ( ph -> B e. RR* ) |
| 7 |
6
|
xnegcld |
|- ( ph -> -e B e. RR* ) |
| 8 |
5 7
|
xaddcld |
|- ( ph -> ( A +e -e B ) e. RR* ) |
| 9 |
|
xsubge0 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( 0 <_ ( A +e -e B ) <-> B <_ A ) ) |
| 10 |
5 6 9
|
syl2anc |
|- ( ph -> ( 0 <_ ( A +e -e B ) <-> B <_ A ) ) |
| 11 |
3 10
|
mpbird |
|- ( ph -> 0 <_ ( A +e -e B ) ) |
| 12 |
8 11
|
jca |
|- ( ph -> ( ( A +e -e B ) e. RR* /\ 0 <_ ( A +e -e B ) ) ) |
| 13 |
|
elxrge0 |
|- ( ( A +e -e B ) e. ( 0 [,] +oo ) <-> ( ( A +e -e B ) e. RR* /\ 0 <_ ( A +e -e B ) ) ) |
| 14 |
12 13
|
sylibr |
|- ( ph -> ( A +e -e B ) e. ( 0 [,] +oo ) ) |