Metamath Proof Explorer


Theorem xrge0subcld

Description: Condition for closure of nonnegative extended reals under subtraction. (Contributed by Thierry Arnoux, 27-May-2020)

Ref Expression
Hypotheses xrge0subcld.a
|- ( ph -> A e. ( 0 [,] +oo ) )
xrge0subcld.b
|- ( ph -> B e. ( 0 [,] +oo ) )
xrge0subcld.c
|- ( ph -> B <_ A )
Assertion xrge0subcld
|- ( ph -> ( A +e -e B ) e. ( 0 [,] +oo ) )

Proof

Step Hyp Ref Expression
1 xrge0subcld.a
 |-  ( ph -> A e. ( 0 [,] +oo ) )
2 xrge0subcld.b
 |-  ( ph -> B e. ( 0 [,] +oo ) )
3 xrge0subcld.c
 |-  ( ph -> B <_ A )
4 iccssxr
 |-  ( 0 [,] +oo ) C_ RR*
5 4 1 sselid
 |-  ( ph -> A e. RR* )
6 4 2 sselid
 |-  ( ph -> B e. RR* )
7 6 xnegcld
 |-  ( ph -> -e B e. RR* )
8 5 7 xaddcld
 |-  ( ph -> ( A +e -e B ) e. RR* )
9 xsubge0
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( 0 <_ ( A +e -e B ) <-> B <_ A ) )
10 5 6 9 syl2anc
 |-  ( ph -> ( 0 <_ ( A +e -e B ) <-> B <_ A ) )
11 3 10 mpbird
 |-  ( ph -> 0 <_ ( A +e -e B ) )
12 8 11 jca
 |-  ( ph -> ( ( A +e -e B ) e. RR* /\ 0 <_ ( A +e -e B ) ) )
13 elxrge0
 |-  ( ( A +e -e B ) e. ( 0 [,] +oo ) <-> ( ( A +e -e B ) e. RR* /\ 0 <_ ( A +e -e B ) ) )
14 12 13 sylibr
 |-  ( ph -> ( A +e -e B ) e. ( 0 [,] +oo ) )