Metamath Proof Explorer


Theorem xrge0subcld

Description: Condition for closure of nonnegative extended reals under subtraction. (Contributed by Thierry Arnoux, 27-May-2020)

Ref Expression
Hypotheses xrge0subcld.a φ A 0 +∞
xrge0subcld.b φ B 0 +∞
xrge0subcld.c φ B A
Assertion xrge0subcld φ A + 𝑒 B 0 +∞

Proof

Step Hyp Ref Expression
1 xrge0subcld.a φ A 0 +∞
2 xrge0subcld.b φ B 0 +∞
3 xrge0subcld.c φ B A
4 iccssxr 0 +∞ *
5 4 1 sselid φ A *
6 4 2 sselid φ B *
7 6 xnegcld φ B *
8 5 7 xaddcld φ A + 𝑒 B *
9 xsubge0 A * B * 0 A + 𝑒 B B A
10 5 6 9 syl2anc φ 0 A + 𝑒 B B A
11 3 10 mpbird φ 0 A + 𝑒 B
12 8 11 jca φ A + 𝑒 B * 0 A + 𝑒 B
13 elxrge0 A + 𝑒 B 0 +∞ A + 𝑒 B * 0 A + 𝑒 B
14 12 13 sylibr φ A + 𝑒 B 0 +∞