Metamath Proof Explorer


Theorem infxrge0lb

Description: A member of a set of nonnegative extended reals is greater than or equal to the set's infimum. (Contributed by Thierry Arnoux, 19-Jul-2020) (Revised by AV, 4-Oct-2020)

Ref Expression
Hypotheses infxrge0lb.a φ A 0 +∞
infxrge0lb.b φ B A
Assertion infxrge0lb φ sup A 0 +∞ < B

Proof

Step Hyp Ref Expression
1 infxrge0lb.a φ A 0 +∞
2 infxrge0lb.b φ B A
3 iccssxr 0 +∞ *
4 xrltso < Or *
5 soss 0 +∞ * < Or * < Or 0 +∞
6 3 4 5 mp2 < Or 0 +∞
7 6 a1i φ < Or 0 +∞
8 xrge0infss A 0 +∞ x 0 +∞ y A ¬ y < x y 0 +∞ x < y z A z < y
9 1 8 syl φ x 0 +∞ y A ¬ y < x y 0 +∞ x < y z A z < y
10 7 9 infcl φ sup A 0 +∞ < 0 +∞
11 3 10 sselid φ sup A 0 +∞ < *
12 1 2 sseldd φ B 0 +∞
13 3 12 sselid φ B *
14 7 9 inflb φ B A ¬ B < sup A 0 +∞ <
15 2 14 mpd φ ¬ B < sup A 0 +∞ <
16 11 13 15 xrnltled φ sup A 0 +∞ < B