Step |
Hyp |
Ref |
Expression |
1 |
|
infxrge0lb.a |
|- ( ph -> A C_ ( 0 [,] +oo ) ) |
2 |
|
infxrge0lb.b |
|- ( ph -> B e. A ) |
3 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
4 |
|
xrltso |
|- < Or RR* |
5 |
|
soss |
|- ( ( 0 [,] +oo ) C_ RR* -> ( < Or RR* -> < Or ( 0 [,] +oo ) ) ) |
6 |
3 4 5
|
mp2 |
|- < Or ( 0 [,] +oo ) |
7 |
6
|
a1i |
|- ( ph -> < Or ( 0 [,] +oo ) ) |
8 |
|
xrge0infss |
|- ( A C_ ( 0 [,] +oo ) -> E. x e. ( 0 [,] +oo ) ( A. y e. A -. y < x /\ A. y e. ( 0 [,] +oo ) ( x < y -> E. z e. A z < y ) ) ) |
9 |
1 8
|
syl |
|- ( ph -> E. x e. ( 0 [,] +oo ) ( A. y e. A -. y < x /\ A. y e. ( 0 [,] +oo ) ( x < y -> E. z e. A z < y ) ) ) |
10 |
7 9
|
infcl |
|- ( ph -> inf ( A , ( 0 [,] +oo ) , < ) e. ( 0 [,] +oo ) ) |
11 |
3 10
|
sselid |
|- ( ph -> inf ( A , ( 0 [,] +oo ) , < ) e. RR* ) |
12 |
1 2
|
sseldd |
|- ( ph -> B e. ( 0 [,] +oo ) ) |
13 |
3 12
|
sselid |
|- ( ph -> B e. RR* ) |
14 |
7 9
|
inflb |
|- ( ph -> ( B e. A -> -. B < inf ( A , ( 0 [,] +oo ) , < ) ) ) |
15 |
2 14
|
mpd |
|- ( ph -> -. B < inf ( A , ( 0 [,] +oo ) , < ) ) |
16 |
11 13 15
|
xrnltled |
|- ( ph -> inf ( A , ( 0 [,] +oo ) , < ) <_ B ) |