| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrge0addcld.a |
|- ( ph -> A e. ( 0 [,] +oo ) ) |
| 2 |
|
xrge0addcld.b |
|- ( ph -> B e. ( 0 [,] +oo ) ) |
| 3 |
|
elxrge0 |
|- ( A e. ( 0 [,] +oo ) <-> ( A e. RR* /\ 0 <_ A ) ) |
| 4 |
1 3
|
sylib |
|- ( ph -> ( A e. RR* /\ 0 <_ A ) ) |
| 5 |
4
|
simpld |
|- ( ph -> A e. RR* ) |
| 6 |
|
elxrge0 |
|- ( B e. ( 0 [,] +oo ) <-> ( B e. RR* /\ 0 <_ B ) ) |
| 7 |
2 6
|
sylib |
|- ( ph -> ( B e. RR* /\ 0 <_ B ) ) |
| 8 |
7
|
simpld |
|- ( ph -> B e. RR* ) |
| 9 |
5 8
|
xaddcld |
|- ( ph -> ( A +e B ) e. RR* ) |
| 10 |
4
|
simprd |
|- ( ph -> 0 <_ A ) |
| 11 |
7
|
simprd |
|- ( ph -> 0 <_ B ) |
| 12 |
|
xaddge0 |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( 0 <_ A /\ 0 <_ B ) ) -> 0 <_ ( A +e B ) ) |
| 13 |
5 8 10 11 12
|
syl22anc |
|- ( ph -> 0 <_ ( A +e B ) ) |
| 14 |
|
elxrge0 |
|- ( ( A +e B ) e. ( 0 [,] +oo ) <-> ( ( A +e B ) e. RR* /\ 0 <_ ( A +e B ) ) ) |
| 15 |
9 13 14
|
sylanbrc |
|- ( ph -> ( A +e B ) e. ( 0 [,] +oo ) ) |