Step |
Hyp |
Ref |
Expression |
1 |
|
xrge0addcld.a |
|- ( ph -> A e. ( 0 [,] +oo ) ) |
2 |
|
xrge0addcld.b |
|- ( ph -> B e. ( 0 [,] +oo ) ) |
3 |
|
elxrge0 |
|- ( A e. ( 0 [,] +oo ) <-> ( A e. RR* /\ 0 <_ A ) ) |
4 |
1 3
|
sylib |
|- ( ph -> ( A e. RR* /\ 0 <_ A ) ) |
5 |
4
|
simpld |
|- ( ph -> A e. RR* ) |
6 |
|
elxrge0 |
|- ( B e. ( 0 [,] +oo ) <-> ( B e. RR* /\ 0 <_ B ) ) |
7 |
2 6
|
sylib |
|- ( ph -> ( B e. RR* /\ 0 <_ B ) ) |
8 |
7
|
simpld |
|- ( ph -> B e. RR* ) |
9 |
5 8
|
xaddcld |
|- ( ph -> ( A +e B ) e. RR* ) |
10 |
4
|
simprd |
|- ( ph -> 0 <_ A ) |
11 |
7
|
simprd |
|- ( ph -> 0 <_ B ) |
12 |
|
xaddge0 |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( 0 <_ A /\ 0 <_ B ) ) -> 0 <_ ( A +e B ) ) |
13 |
5 8 10 11 12
|
syl22anc |
|- ( ph -> 0 <_ ( A +e B ) ) |
14 |
|
elxrge0 |
|- ( ( A +e B ) e. ( 0 [,] +oo ) <-> ( ( A +e B ) e. RR* /\ 0 <_ ( A +e B ) ) ) |
15 |
9 13 14
|
sylanbrc |
|- ( ph -> ( A +e B ) e. ( 0 [,] +oo ) ) |