Metamath Proof Explorer


Theorem 0bdop

Description: The identically zero operator is bounded. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion 0bdop 0hopBndLinOp

Proof

Step Hyp Ref Expression
1 0lnop 0hopLinOp
2 nmop0 normop0hop=0
3 0ltpnf 0<+∞
4 2 3 eqbrtri normop0hop<+∞
5 elbdop 0hopBndLinOp0hopLinOpnormop0hop<+∞
6 1 4 5 mpbir2an 0hopBndLinOp