Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
Diophantine sets 3: construction
0dioph
Next ⟩
vdioph
Metamath Proof Explorer
Ascii
Unicode
Theorem
0dioph
Description:
The null set is Diophantine.
(Contributed by
Stefan O'Rear
, 10-Oct-2014)
Ref
Expression
Assertion
0dioph
⊢
A
∈
ℕ
0
→
∅
∈
Dioph
⁡
A
Proof
Step
Hyp
Ref
Expression
1
ax-1ne0
⊢
1
≠
0
2
1
neii
⊢
¬
1
=
0
3
2
rgenw
⊢
∀
a
∈
ℕ
0
1
…
A
¬
1
=
0
4
rabeq0
⊢
a
∈
ℕ
0
1
…
A
|
1
=
0
=
∅
↔
∀
a
∈
ℕ
0
1
…
A
¬
1
=
0
5
3
4
mpbir
⊢
a
∈
ℕ
0
1
…
A
|
1
=
0
=
∅
6
ovex
⊢
1
…
A
∈
V
7
1z
⊢
1
∈
ℤ
8
mzpconstmpt
⊢
1
…
A
∈
V
∧
1
∈
ℤ
→
a
∈
ℤ
1
…
A
⟼
1
∈
mzPoly
⁡
1
…
A
9
6
7
8
mp2an
⊢
a
∈
ℤ
1
…
A
⟼
1
∈
mzPoly
⁡
1
…
A
10
eq0rabdioph
⊢
A
∈
ℕ
0
∧
a
∈
ℤ
1
…
A
⟼
1
∈
mzPoly
⁡
1
…
A
→
a
∈
ℕ
0
1
…
A
|
1
=
0
∈
Dioph
⁡
A
11
9
10
mpan2
⊢
A
∈
ℕ
0
→
a
∈
ℕ
0
1
…
A
|
1
=
0
∈
Dioph
⁡
A
12
5
11
eqeltrrid
⊢
A
∈
ℕ
0
→
∅
∈
Dioph
⁡
A