Metamath Proof Explorer


Theorem 0dioph

Description: The null set is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014)

Ref Expression
Assertion 0dioph A 0 Dioph A

Proof

Step Hyp Ref Expression
1 ax-1ne0 1 0
2 1 neii ¬ 1 = 0
3 2 rgenw a 0 1 A ¬ 1 = 0
4 rabeq0 a 0 1 A | 1 = 0 = a 0 1 A ¬ 1 = 0
5 3 4 mpbir a 0 1 A | 1 = 0 =
6 ovex 1 A V
7 1z 1
8 mzpconstmpt 1 A V 1 a 1 A 1 mzPoly 1 A
9 6 7 8 mp2an a 1 A 1 mzPoly 1 A
10 eq0rabdioph A 0 a 1 A 1 mzPoly 1 A a 0 1 A | 1 = 0 Dioph A
11 9 10 mpan2 A 0 a 0 1 A | 1 = 0 Dioph A
12 5 11 eqeltrrid A 0 Dioph A