| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 2 | 1 | neii | ⊢ ¬  1  =  0 | 
						
							| 3 | 2 | rgenw | ⊢ ∀ 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝐴 ) ) ¬  1  =  0 | 
						
							| 4 |  | rabeq0 | ⊢ ( { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝐴 ) )  ∣  1  =  0 }  =  ∅  ↔  ∀ 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝐴 ) ) ¬  1  =  0 ) | 
						
							| 5 | 3 4 | mpbir | ⊢ { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝐴 ) )  ∣  1  =  0 }  =  ∅ | 
						
							| 6 |  | ovex | ⊢ ( 1 ... 𝐴 )  ∈  V | 
						
							| 7 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 8 |  | mzpconstmpt | ⊢ ( ( ( 1 ... 𝐴 )  ∈  V  ∧  1  ∈  ℤ )  →  ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 𝐴 ) )  ↦  1 )  ∈  ( mzPoly ‘ ( 1 ... 𝐴 ) ) ) | 
						
							| 9 | 6 7 8 | mp2an | ⊢ ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 𝐴 ) )  ↦  1 )  ∈  ( mzPoly ‘ ( 1 ... 𝐴 ) ) | 
						
							| 10 |  | eq0rabdioph | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 𝐴 ) )  ↦  1 )  ∈  ( mzPoly ‘ ( 1 ... 𝐴 ) ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝐴 ) )  ∣  1  =  0 }  ∈  ( Dioph ‘ 𝐴 ) ) | 
						
							| 11 | 9 10 | mpan2 | ⊢ ( 𝐴  ∈  ℕ0  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝐴 ) )  ∣  1  =  0 }  ∈  ( Dioph ‘ 𝐴 ) ) | 
						
							| 12 | 5 11 | eqeltrrid | ⊢ ( 𝐴  ∈  ℕ0  →  ∅  ∈  ( Dioph ‘ 𝐴 ) ) |