| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 2 |
1
|
neii |
⊢ ¬ 1 = 0 |
| 3 |
2
|
rgenw |
⊢ ∀ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝐴 ) ) ¬ 1 = 0 |
| 4 |
|
rabeq0 |
⊢ ( { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝐴 ) ) ∣ 1 = 0 } = ∅ ↔ ∀ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝐴 ) ) ¬ 1 = 0 ) |
| 5 |
3 4
|
mpbir |
⊢ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝐴 ) ) ∣ 1 = 0 } = ∅ |
| 6 |
|
ovex |
⊢ ( 1 ... 𝐴 ) ∈ V |
| 7 |
|
1z |
⊢ 1 ∈ ℤ |
| 8 |
|
mzpconstmpt |
⊢ ( ( ( 1 ... 𝐴 ) ∈ V ∧ 1 ∈ ℤ ) → ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 𝐴 ) ) ↦ 1 ) ∈ ( mzPoly ‘ ( 1 ... 𝐴 ) ) ) |
| 9 |
6 7 8
|
mp2an |
⊢ ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 𝐴 ) ) ↦ 1 ) ∈ ( mzPoly ‘ ( 1 ... 𝐴 ) ) |
| 10 |
|
eq0rabdioph |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 𝐴 ) ) ↦ 1 ) ∈ ( mzPoly ‘ ( 1 ... 𝐴 ) ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝐴 ) ) ∣ 1 = 0 } ∈ ( Dioph ‘ 𝐴 ) ) |
| 11 |
9 10
|
mpan2 |
⊢ ( 𝐴 ∈ ℕ0 → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝐴 ) ) ∣ 1 = 0 } ∈ ( Dioph ‘ 𝐴 ) ) |
| 12 |
5 11
|
eqeltrrid |
⊢ ( 𝐴 ∈ ℕ0 → ∅ ∈ ( Dioph ‘ 𝐴 ) ) |