Metamath Proof Explorer


Theorem 0dioph

Description: The null set is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014)

Ref Expression
Assertion 0dioph ( 𝐴 ∈ ℕ0 → ∅ ∈ ( Dioph ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ax-1ne0 1 ≠ 0
2 1 neii ¬ 1 = 0
3 2 rgenw 𝑎 ∈ ( ℕ0m ( 1 ... 𝐴 ) ) ¬ 1 = 0
4 rabeq0 ( { 𝑎 ∈ ( ℕ0m ( 1 ... 𝐴 ) ) ∣ 1 = 0 } = ∅ ↔ ∀ 𝑎 ∈ ( ℕ0m ( 1 ... 𝐴 ) ) ¬ 1 = 0 )
5 3 4 mpbir { 𝑎 ∈ ( ℕ0m ( 1 ... 𝐴 ) ) ∣ 1 = 0 } = ∅
6 ovex ( 1 ... 𝐴 ) ∈ V
7 1z 1 ∈ ℤ
8 mzpconstmpt ( ( ( 1 ... 𝐴 ) ∈ V ∧ 1 ∈ ℤ ) → ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 𝐴 ) ) ↦ 1 ) ∈ ( mzPoly ‘ ( 1 ... 𝐴 ) ) )
9 6 7 8 mp2an ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 𝐴 ) ) ↦ 1 ) ∈ ( mzPoly ‘ ( 1 ... 𝐴 ) )
10 eq0rabdioph ( ( 𝐴 ∈ ℕ0 ∧ ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 𝐴 ) ) ↦ 1 ) ∈ ( mzPoly ‘ ( 1 ... 𝐴 ) ) ) → { 𝑎 ∈ ( ℕ0m ( 1 ... 𝐴 ) ) ∣ 1 = 0 } ∈ ( Dioph ‘ 𝐴 ) )
11 9 10 mpan2 ( 𝐴 ∈ ℕ0 → { 𝑎 ∈ ( ℕ0m ( 1 ... 𝐴 ) ) ∣ 1 = 0 } ∈ ( Dioph ‘ 𝐴 ) )
12 5 11 eqeltrrid ( 𝐴 ∈ ℕ0 → ∅ ∈ ( Dioph ‘ 𝐴 ) )