| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ 0  =  0 | 
						
							| 2 | 1 | rgenw | ⊢ ∀ 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝐴 ) ) 0  =  0 | 
						
							| 3 |  | rabid2 | ⊢ ( ( ℕ0  ↑m  ( 1 ... 𝐴 ) )  =  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝐴 ) )  ∣  0  =  0 }  ↔  ∀ 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝐴 ) ) 0  =  0 ) | 
						
							| 4 | 2 3 | mpbir | ⊢ ( ℕ0  ↑m  ( 1 ... 𝐴 ) )  =  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝐴 ) )  ∣  0  =  0 } | 
						
							| 5 |  | ovex | ⊢ ( 1 ... 𝐴 )  ∈  V | 
						
							| 6 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 7 |  | mzpconstmpt | ⊢ ( ( ( 1 ... 𝐴 )  ∈  V  ∧  0  ∈  ℤ )  →  ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 𝐴 ) )  ↦  0 )  ∈  ( mzPoly ‘ ( 1 ... 𝐴 ) ) ) | 
						
							| 8 | 5 6 7 | mp2an | ⊢ ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 𝐴 ) )  ↦  0 )  ∈  ( mzPoly ‘ ( 1 ... 𝐴 ) ) | 
						
							| 9 |  | eq0rabdioph | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  ( 𝑎  ∈  ( ℤ  ↑m  ( 1 ... 𝐴 ) )  ↦  0 )  ∈  ( mzPoly ‘ ( 1 ... 𝐴 ) ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝐴 ) )  ∣  0  =  0 }  ∈  ( Dioph ‘ 𝐴 ) ) | 
						
							| 10 | 8 9 | mpan2 | ⊢ ( 𝐴  ∈  ℕ0  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝐴 ) )  ∣  0  =  0 }  ∈  ( Dioph ‘ 𝐴 ) ) | 
						
							| 11 | 4 10 | eqeltrid | ⊢ ( 𝐴  ∈  ℕ0  →  ( ℕ0  ↑m  ( 1 ... 𝐴 ) )  ∈  ( Dioph ‘ 𝐴 ) ) |