| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ 0 = 0 |
| 2 |
1
|
rgenw |
⊢ ∀ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝐴 ) ) 0 = 0 |
| 3 |
|
rabid2 |
⊢ ( ( ℕ0 ↑m ( 1 ... 𝐴 ) ) = { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝐴 ) ) ∣ 0 = 0 } ↔ ∀ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝐴 ) ) 0 = 0 ) |
| 4 |
2 3
|
mpbir |
⊢ ( ℕ0 ↑m ( 1 ... 𝐴 ) ) = { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝐴 ) ) ∣ 0 = 0 } |
| 5 |
|
ovex |
⊢ ( 1 ... 𝐴 ) ∈ V |
| 6 |
|
0z |
⊢ 0 ∈ ℤ |
| 7 |
|
mzpconstmpt |
⊢ ( ( ( 1 ... 𝐴 ) ∈ V ∧ 0 ∈ ℤ ) → ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 𝐴 ) ) ↦ 0 ) ∈ ( mzPoly ‘ ( 1 ... 𝐴 ) ) ) |
| 8 |
5 6 7
|
mp2an |
⊢ ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 𝐴 ) ) ↦ 0 ) ∈ ( mzPoly ‘ ( 1 ... 𝐴 ) ) |
| 9 |
|
eq0rabdioph |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 𝐴 ) ) ↦ 0 ) ∈ ( mzPoly ‘ ( 1 ... 𝐴 ) ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝐴 ) ) ∣ 0 = 0 } ∈ ( Dioph ‘ 𝐴 ) ) |
| 10 |
8 9
|
mpan2 |
⊢ ( 𝐴 ∈ ℕ0 → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝐴 ) ) ∣ 0 = 0 } ∈ ( Dioph ‘ 𝐴 ) ) |
| 11 |
4 10
|
eqeltrid |
⊢ ( 𝐴 ∈ ℕ0 → ( ℕ0 ↑m ( 1 ... 𝐴 ) ) ∈ ( Dioph ‘ 𝐴 ) ) |