Metamath Proof Explorer


Theorem vdioph

Description: The "universal" set (as large as possible given eldiophss ) is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014)

Ref Expression
Assertion vdioph ( 𝐴 ∈ ℕ0 → ( ℕ0m ( 1 ... 𝐴 ) ) ∈ ( Dioph ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 eqid 0 = 0
2 1 rgenw 𝑎 ∈ ( ℕ0m ( 1 ... 𝐴 ) ) 0 = 0
3 rabid2 ( ( ℕ0m ( 1 ... 𝐴 ) ) = { 𝑎 ∈ ( ℕ0m ( 1 ... 𝐴 ) ) ∣ 0 = 0 } ↔ ∀ 𝑎 ∈ ( ℕ0m ( 1 ... 𝐴 ) ) 0 = 0 )
4 2 3 mpbir ( ℕ0m ( 1 ... 𝐴 ) ) = { 𝑎 ∈ ( ℕ0m ( 1 ... 𝐴 ) ) ∣ 0 = 0 }
5 ovex ( 1 ... 𝐴 ) ∈ V
6 0z 0 ∈ ℤ
7 mzpconstmpt ( ( ( 1 ... 𝐴 ) ∈ V ∧ 0 ∈ ℤ ) → ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 𝐴 ) ) ↦ 0 ) ∈ ( mzPoly ‘ ( 1 ... 𝐴 ) ) )
8 5 6 7 mp2an ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 𝐴 ) ) ↦ 0 ) ∈ ( mzPoly ‘ ( 1 ... 𝐴 ) )
9 eq0rabdioph ( ( 𝐴 ∈ ℕ0 ∧ ( 𝑎 ∈ ( ℤ ↑m ( 1 ... 𝐴 ) ) ↦ 0 ) ∈ ( mzPoly ‘ ( 1 ... 𝐴 ) ) ) → { 𝑎 ∈ ( ℕ0m ( 1 ... 𝐴 ) ) ∣ 0 = 0 } ∈ ( Dioph ‘ 𝐴 ) )
10 8 9 mpan2 ( 𝐴 ∈ ℕ0 → { 𝑎 ∈ ( ℕ0m ( 1 ... 𝐴 ) ) ∣ 0 = 0 } ∈ ( Dioph ‘ 𝐴 ) )
11 4 10 eqeltrid ( 𝐴 ∈ ℕ0 → ( ℕ0m ( 1 ... 𝐴 ) ) ∈ ( Dioph ‘ 𝐴 ) )