Metamath Proof Explorer


Theorem vdioph

Description: The "universal" set (as large as possible given eldiophss ) is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014)

Ref Expression
Assertion vdioph A001ADiophA

Proof

Step Hyp Ref Expression
1 eqid 0=0
2 1 rgenw a01A0=0
3 rabid2 01A=a01A|0=0a01A0=0
4 2 3 mpbir 01A=a01A|0=0
5 ovex 1AV
6 0z 0
7 mzpconstmpt 1AV0a1A0mzPoly1A
8 5 6 7 mp2an a1A0mzPoly1A
9 eq0rabdioph A0a1A0mzPoly1Aa01A|0=0DiophA
10 8 9 mpan2 A0a01A|0=0DiophA
11 4 10 eqeltrid A001ADiophA