Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- 0 = 0 |
2 |
1
|
rgenw |
|- A. a e. ( NN0 ^m ( 1 ... A ) ) 0 = 0 |
3 |
|
rabid2 |
|- ( ( NN0 ^m ( 1 ... A ) ) = { a e. ( NN0 ^m ( 1 ... A ) ) | 0 = 0 } <-> A. a e. ( NN0 ^m ( 1 ... A ) ) 0 = 0 ) |
4 |
2 3
|
mpbir |
|- ( NN0 ^m ( 1 ... A ) ) = { a e. ( NN0 ^m ( 1 ... A ) ) | 0 = 0 } |
5 |
|
ovex |
|- ( 1 ... A ) e. _V |
6 |
|
0z |
|- 0 e. ZZ |
7 |
|
mzpconstmpt |
|- ( ( ( 1 ... A ) e. _V /\ 0 e. ZZ ) -> ( a e. ( ZZ ^m ( 1 ... A ) ) |-> 0 ) e. ( mzPoly ` ( 1 ... A ) ) ) |
8 |
5 6 7
|
mp2an |
|- ( a e. ( ZZ ^m ( 1 ... A ) ) |-> 0 ) e. ( mzPoly ` ( 1 ... A ) ) |
9 |
|
eq0rabdioph |
|- ( ( A e. NN0 /\ ( a e. ( ZZ ^m ( 1 ... A ) ) |-> 0 ) e. ( mzPoly ` ( 1 ... A ) ) ) -> { a e. ( NN0 ^m ( 1 ... A ) ) | 0 = 0 } e. ( Dioph ` A ) ) |
10 |
8 9
|
mpan2 |
|- ( A e. NN0 -> { a e. ( NN0 ^m ( 1 ... A ) ) | 0 = 0 } e. ( Dioph ` A ) ) |
11 |
4 10
|
eqeltrid |
|- ( A e. NN0 -> ( NN0 ^m ( 1 ... A ) ) e. ( Dioph ` A ) ) |