| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  0 = 0 | 
						
							| 2 | 1 | rgenw |  |-  A. a e. ( NN0 ^m ( 1 ... A ) ) 0 = 0 | 
						
							| 3 |  | rabid2 |  |-  ( ( NN0 ^m ( 1 ... A ) ) = { a e. ( NN0 ^m ( 1 ... A ) ) | 0 = 0 } <-> A. a e. ( NN0 ^m ( 1 ... A ) ) 0 = 0 ) | 
						
							| 4 | 2 3 | mpbir |  |-  ( NN0 ^m ( 1 ... A ) ) = { a e. ( NN0 ^m ( 1 ... A ) ) | 0 = 0 } | 
						
							| 5 |  | ovex |  |-  ( 1 ... A ) e. _V | 
						
							| 6 |  | 0z |  |-  0 e. ZZ | 
						
							| 7 |  | mzpconstmpt |  |-  ( ( ( 1 ... A ) e. _V /\ 0 e. ZZ ) -> ( a e. ( ZZ ^m ( 1 ... A ) ) |-> 0 ) e. ( mzPoly ` ( 1 ... A ) ) ) | 
						
							| 8 | 5 6 7 | mp2an |  |-  ( a e. ( ZZ ^m ( 1 ... A ) ) |-> 0 ) e. ( mzPoly ` ( 1 ... A ) ) | 
						
							| 9 |  | eq0rabdioph |  |-  ( ( A e. NN0 /\ ( a e. ( ZZ ^m ( 1 ... A ) ) |-> 0 ) e. ( mzPoly ` ( 1 ... A ) ) ) -> { a e. ( NN0 ^m ( 1 ... A ) ) | 0 = 0 } e. ( Dioph ` A ) ) | 
						
							| 10 | 8 9 | mpan2 |  |-  ( A e. NN0 -> { a e. ( NN0 ^m ( 1 ... A ) ) | 0 = 0 } e. ( Dioph ` A ) ) | 
						
							| 11 | 4 10 | eqeltrid |  |-  ( A e. NN0 -> ( NN0 ^m ( 1 ... A ) ) e. ( Dioph ` A ) ) |