Metamath Proof Explorer


Theorem 0dioph

Description: The null set is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014)

Ref Expression
Assertion 0dioph
|- ( A e. NN0 -> (/) e. ( Dioph ` A ) )

Proof

Step Hyp Ref Expression
1 ax-1ne0
 |-  1 =/= 0
2 1 neii
 |-  -. 1 = 0
3 2 rgenw
 |-  A. a e. ( NN0 ^m ( 1 ... A ) ) -. 1 = 0
4 rabeq0
 |-  ( { a e. ( NN0 ^m ( 1 ... A ) ) | 1 = 0 } = (/) <-> A. a e. ( NN0 ^m ( 1 ... A ) ) -. 1 = 0 )
5 3 4 mpbir
 |-  { a e. ( NN0 ^m ( 1 ... A ) ) | 1 = 0 } = (/)
6 ovex
 |-  ( 1 ... A ) e. _V
7 1z
 |-  1 e. ZZ
8 mzpconstmpt
 |-  ( ( ( 1 ... A ) e. _V /\ 1 e. ZZ ) -> ( a e. ( ZZ ^m ( 1 ... A ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... A ) ) )
9 6 7 8 mp2an
 |-  ( a e. ( ZZ ^m ( 1 ... A ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... A ) )
10 eq0rabdioph
 |-  ( ( A e. NN0 /\ ( a e. ( ZZ ^m ( 1 ... A ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... A ) ) ) -> { a e. ( NN0 ^m ( 1 ... A ) ) | 1 = 0 } e. ( Dioph ` A ) )
11 9 10 mpan2
 |-  ( A e. NN0 -> { a e. ( NN0 ^m ( 1 ... A ) ) | 1 = 0 } e. ( Dioph ` A ) )
12 5 11 eqeltrrid
 |-  ( A e. NN0 -> (/) e. ( Dioph ` A ) )