| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 2 | 1 | neii |  |-  -. 1 = 0 | 
						
							| 3 | 2 | rgenw |  |-  A. a e. ( NN0 ^m ( 1 ... A ) ) -. 1 = 0 | 
						
							| 4 |  | rabeq0 |  |-  ( { a e. ( NN0 ^m ( 1 ... A ) ) | 1 = 0 } = (/) <-> A. a e. ( NN0 ^m ( 1 ... A ) ) -. 1 = 0 ) | 
						
							| 5 | 3 4 | mpbir |  |-  { a e. ( NN0 ^m ( 1 ... A ) ) | 1 = 0 } = (/) | 
						
							| 6 |  | ovex |  |-  ( 1 ... A ) e. _V | 
						
							| 7 |  | 1z |  |-  1 e. ZZ | 
						
							| 8 |  | mzpconstmpt |  |-  ( ( ( 1 ... A ) e. _V /\ 1 e. ZZ ) -> ( a e. ( ZZ ^m ( 1 ... A ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... A ) ) ) | 
						
							| 9 | 6 7 8 | mp2an |  |-  ( a e. ( ZZ ^m ( 1 ... A ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... A ) ) | 
						
							| 10 |  | eq0rabdioph |  |-  ( ( A e. NN0 /\ ( a e. ( ZZ ^m ( 1 ... A ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... A ) ) ) -> { a e. ( NN0 ^m ( 1 ... A ) ) | 1 = 0 } e. ( Dioph ` A ) ) | 
						
							| 11 | 9 10 | mpan2 |  |-  ( A e. NN0 -> { a e. ( NN0 ^m ( 1 ... A ) ) | 1 = 0 } e. ( Dioph ` A ) ) | 
						
							| 12 | 5 11 | eqeltrrid |  |-  ( A e. NN0 -> (/) e. ( Dioph ` A ) ) |