Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1ne0 |
|- 1 =/= 0 |
2 |
1
|
neii |
|- -. 1 = 0 |
3 |
2
|
rgenw |
|- A. a e. ( NN0 ^m ( 1 ... A ) ) -. 1 = 0 |
4 |
|
rabeq0 |
|- ( { a e. ( NN0 ^m ( 1 ... A ) ) | 1 = 0 } = (/) <-> A. a e. ( NN0 ^m ( 1 ... A ) ) -. 1 = 0 ) |
5 |
3 4
|
mpbir |
|- { a e. ( NN0 ^m ( 1 ... A ) ) | 1 = 0 } = (/) |
6 |
|
ovex |
|- ( 1 ... A ) e. _V |
7 |
|
1z |
|- 1 e. ZZ |
8 |
|
mzpconstmpt |
|- ( ( ( 1 ... A ) e. _V /\ 1 e. ZZ ) -> ( a e. ( ZZ ^m ( 1 ... A ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... A ) ) ) |
9 |
6 7 8
|
mp2an |
|- ( a e. ( ZZ ^m ( 1 ... A ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... A ) ) |
10 |
|
eq0rabdioph |
|- ( ( A e. NN0 /\ ( a e. ( ZZ ^m ( 1 ... A ) ) |-> 1 ) e. ( mzPoly ` ( 1 ... A ) ) ) -> { a e. ( NN0 ^m ( 1 ... A ) ) | 1 = 0 } e. ( Dioph ` A ) ) |
11 |
9 10
|
mpan2 |
|- ( A e. NN0 -> { a e. ( NN0 ^m ( 1 ... A ) ) | 1 = 0 } e. ( Dioph ` A ) ) |
12 |
5 11
|
eqeltrrid |
|- ( A e. NN0 -> (/) e. ( Dioph ` A ) ) |