Metamath Proof Explorer


Theorem 0domg

Description: Any set dominates the empty set. (Contributed by NM, 26-Oct-2003) (Revised by Mario Carneiro, 26-Apr-2015) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 29-Nov-2024)

Ref Expression
Assertion 0domg A V A

Proof

Step Hyp Ref Expression
1 0ex V
2 f1eq1 f = f : 1-1 A : 1-1 A
3 f10 : 1-1 A
4 1 2 3 ceqsexv2d f f : 1-1 A
5 brdom2g V A V A f f : 1-1 A
6 1 5 mpan A V A f f : 1-1 A
7 4 6 mpbiri A V A