Metamath Proof Explorer


Theorem 0idsr

Description: The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996) (New usage is discouraged.)

Ref Expression
Assertion 0idsr A𝑹A+𝑹0𝑹=A

Proof

Step Hyp Ref Expression
1 df-nr 𝑹=𝑷×𝑷/~𝑹
2 oveq1 xy~𝑹=Axy~𝑹+𝑹0𝑹=A+𝑹0𝑹
3 id xy~𝑹=Axy~𝑹=A
4 2 3 eqeq12d xy~𝑹=Axy~𝑹+𝑹0𝑹=xy~𝑹A+𝑹0𝑹=A
5 df-0r 0𝑹=1𝑷1𝑷~𝑹
6 5 oveq2i xy~𝑹+𝑹0𝑹=xy~𝑹+𝑹1𝑷1𝑷~𝑹
7 1pr 1𝑷𝑷
8 addsrpr x𝑷y𝑷1𝑷𝑷1𝑷𝑷xy~𝑹+𝑹1𝑷1𝑷~𝑹=x+𝑷1𝑷y+𝑷1𝑷~𝑹
9 7 7 8 mpanr12 x𝑷y𝑷xy~𝑹+𝑹1𝑷1𝑷~𝑹=x+𝑷1𝑷y+𝑷1𝑷~𝑹
10 addclpr x𝑷1𝑷𝑷x+𝑷1𝑷𝑷
11 7 10 mpan2 x𝑷x+𝑷1𝑷𝑷
12 addclpr y𝑷1𝑷𝑷y+𝑷1𝑷𝑷
13 7 12 mpan2 y𝑷y+𝑷1𝑷𝑷
14 11 13 anim12i x𝑷y𝑷x+𝑷1𝑷𝑷y+𝑷1𝑷𝑷
15 vex xV
16 vex yV
17 7 elexi 1𝑷V
18 addcompr z+𝑷w=w+𝑷z
19 addasspr z+𝑷w+𝑷v=z+𝑷w+𝑷v
20 15 16 17 18 19 caov12 x+𝑷y+𝑷1𝑷=y+𝑷x+𝑷1𝑷
21 enreceq x𝑷y𝑷x+𝑷1𝑷𝑷y+𝑷1𝑷𝑷xy~𝑹=x+𝑷1𝑷y+𝑷1𝑷~𝑹x+𝑷y+𝑷1𝑷=y+𝑷x+𝑷1𝑷
22 20 21 mpbiri x𝑷y𝑷x+𝑷1𝑷𝑷y+𝑷1𝑷𝑷xy~𝑹=x+𝑷1𝑷y+𝑷1𝑷~𝑹
23 14 22 mpdan x𝑷y𝑷xy~𝑹=x+𝑷1𝑷y+𝑷1𝑷~𝑹
24 9 23 eqtr4d x𝑷y𝑷xy~𝑹+𝑹1𝑷1𝑷~𝑹=xy~𝑹
25 6 24 eqtrid x𝑷y𝑷xy~𝑹+𝑹0𝑹=xy~𝑹
26 1 4 25 ecoptocl A𝑹A+𝑹0𝑹=A