Metamath Proof Explorer


Theorem 0mat2pmat

Description: The transformed zero matrix is the zero polynomial matrix. (Contributed by AV, 5-Aug-2019) (Proof shortened by AV, 19-Nov-2019)

Ref Expression
Hypotheses idmatidpmat.t T=NmatToPolyMatR
idmatidpmat.p P=Poly1R
0mat2pmat.0 0˙=0NMatR
0mat2pmat.z Z=0NMatP
Assertion 0mat2pmat RRingNFinT0˙=Z

Proof

Step Hyp Ref Expression
1 idmatidpmat.t T=NmatToPolyMatR
2 idmatidpmat.p P=Poly1R
3 0mat2pmat.0 0˙=0NMatR
4 0mat2pmat.z Z=0NMatP
5 eqid NMatR=NMatR
6 eqid BaseNMatR=BaseNMatR
7 eqid NMatP=NMatP
8 eqid BaseNMatP=BaseNMatP
9 1 5 6 2 7 8 mat2pmatghm NFinRRingTNMatRGrpHomNMatP
10 9 ancoms RRingNFinTNMatRGrpHomNMatP
11 3 4 ghmid TNMatRGrpHomNMatPT0˙=Z
12 10 11 syl RRingNFinT0˙=Z