Metamath Proof Explorer
		
		
		
		Description:  A set with an empty base set is always a magma.  (Contributed by AV, 25-Feb-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | 0mgm.b |  | 
				
					|  | Assertion | 0mgm |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0mgm.b |  | 
						
							| 2 |  | ral0 |  | 
						
							| 3 | 1 | eqcomi |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 | 3 4 | ismgm |  | 
						
							| 6 | 2 5 | mpbiri |  |