Metamath Proof Explorer


Theorem 0mgm

Description: A set with an empty base set is always a magma. (Contributed by AV, 25-Feb-2020)

Ref Expression
Hypothesis 0mgm.b BaseM=
Assertion 0mgm MVMMgm

Proof

Step Hyp Ref Expression
1 0mgm.b BaseM=
2 ral0 xyx+My
3 1 eqcomi =BaseM
4 eqid +M=+M
5 3 4 ismgm MVMMgmxyx+My
6 2 5 mpbiri MVMMgm