Metamath Proof Explorer


Theorem 0mpo0

Description: A mapping operation with empty domain is empty. Generalization of mpo0 . (Contributed by AV, 27-Jan-2024)

Ref Expression
Assertion 0mpo0 A = B = x A , y B C =

Proof

Step Hyp Ref Expression
1 df-mpo x A , y B C = x y z | x A y B z = C
2 df-oprab x y z | x A y B z = C = w | x y z w = x y z x A y B z = C
3 1 2 eqtri x A , y B C = w | x y z w = x y z x A y B z = C
4 nel02 A = ¬ x A
5 nel02 B = ¬ y B
6 4 5 orim12i A = B = ¬ x A ¬ y B
7 ianor ¬ x A y B ¬ x A ¬ y B
8 6 7 sylibr A = B = ¬ x A y B
9 simprl w = x y z x A y B z = C x A y B
10 8 9 nsyl A = B = ¬ w = x y z x A y B z = C
11 10 nexdv A = B = ¬ z w = x y z x A y B z = C
12 11 nexdv A = B = ¬ y z w = x y z x A y B z = C
13 12 nexdv A = B = ¬ x y z w = x y z x A y B z = C
14 13 alrimiv A = B = w ¬ x y z w = x y z x A y B z = C
15 ab0 w | x y z w = x y z x A y B z = C = w ¬ x y z w = x y z x A y B z = C
16 14 15 sylibr A = B = w | x y z w = x y z x A y B z = C =
17 3 16 syl5eq A = B = x A , y B C =