Metamath Proof Explorer


Theorem 0nelfb

Description: No filter base contains the empty set. (Contributed by Jeff Hankins, 1-Sep-2009) (Revised by Mario Carneiro, 28-Jul-2015)

Ref Expression
Assertion 0nelfb FfBasB¬F

Proof

Step Hyp Ref Expression
1 elfvdm FfBasBBdomfBas
2 isfbas BdomfBasFfBasBF𝒫BFFxFyFF𝒫xy
3 1 2 syl FfBasBFfBasBF𝒫BFFxFyFF𝒫xy
4 3 ibi FfBasBF𝒫BFFxFyFF𝒫xy
5 simpr2 F𝒫BFFxFyFF𝒫xyF
6 4 5 syl FfBasBF
7 df-nel F¬F
8 6 7 sylib FfBasB¬F