Metamath Proof Explorer


Theorem 0nmhm

Description: The zero operator is a bounded linear operator. (Contributed by Mario Carneiro, 20-Oct-2015)

Ref Expression
Hypotheses 0nmhm.1 V = Base S
0nmhm.2 0 ˙ = 0 T
0nmhm.f F = Scalar S
0nmhm.g G = Scalar T
Assertion 0nmhm S NrmMod T NrmMod F = G V × 0 ˙ S NMHom T

Proof

Step Hyp Ref Expression
1 0nmhm.1 V = Base S
2 0nmhm.2 0 ˙ = 0 T
3 0nmhm.f F = Scalar S
4 0nmhm.g G = Scalar T
5 nlmlmod S NrmMod S LMod
6 nlmlmod T NrmMod T LMod
7 id F = G F = G
8 2 1 3 4 0lmhm S LMod T LMod F = G V × 0 ˙ S LMHom T
9 5 6 7 8 syl3an S NrmMod T NrmMod F = G V × 0 ˙ S LMHom T
10 nlmngp S NrmMod S NrmGrp
11 nlmngp T NrmMod T NrmGrp
12 1 2 0nghm S NrmGrp T NrmGrp V × 0 ˙ S NGHom T
13 10 11 12 syl2an S NrmMod T NrmMod V × 0 ˙ S NGHom T
14 13 3adant3 S NrmMod T NrmMod F = G V × 0 ˙ S NGHom T
15 isnmhm V × 0 ˙ S NMHom T S NrmMod T NrmMod V × 0 ˙ S LMHom T V × 0 ˙ S NGHom T
16 15 baib S NrmMod T NrmMod V × 0 ˙ S NMHom T V × 0 ˙ S LMHom T V × 0 ˙ S NGHom T
17 16 3adant3 S NrmMod T NrmMod F = G V × 0 ˙ S NMHom T V × 0 ˙ S LMHom T V × 0 ˙ S NGHom T
18 9 14 17 mpbir2and S NrmMod T NrmMod F = G V × 0 ˙ S NMHom T