Metamath Proof Explorer


Theorem 0nmhm

Description: The zero operator is a bounded linear operator. (Contributed by Mario Carneiro, 20-Oct-2015)

Ref Expression
Hypotheses 0nmhm.1 V=BaseS
0nmhm.2 0˙=0T
0nmhm.f F=ScalarS
0nmhm.g G=ScalarT
Assertion 0nmhm SNrmModTNrmModF=GV×0˙SNMHomT

Proof

Step Hyp Ref Expression
1 0nmhm.1 V=BaseS
2 0nmhm.2 0˙=0T
3 0nmhm.f F=ScalarS
4 0nmhm.g G=ScalarT
5 nlmlmod SNrmModSLMod
6 nlmlmod TNrmModTLMod
7 id F=GF=G
8 2 1 3 4 0lmhm SLModTLModF=GV×0˙SLMHomT
9 5 6 7 8 syl3an SNrmModTNrmModF=GV×0˙SLMHomT
10 nlmngp SNrmModSNrmGrp
11 nlmngp TNrmModTNrmGrp
12 1 2 0nghm SNrmGrpTNrmGrpV×0˙SNGHomT
13 10 11 12 syl2an SNrmModTNrmModV×0˙SNGHomT
14 13 3adant3 SNrmModTNrmModF=GV×0˙SNGHomT
15 isnmhm V×0˙SNMHomTSNrmModTNrmModV×0˙SLMHomTV×0˙SNGHomT
16 15 baib SNrmModTNrmModV×0˙SNMHomTV×0˙SLMHomTV×0˙SNGHomT
17 16 3adant3 SNrmModTNrmModF=GV×0˙SNMHomTV×0˙SLMHomTV×0˙SNGHomT
18 9 14 17 mpbir2and SNrmModTNrmModF=GV×0˙SNMHomT