Metamath Proof Explorer


Theorem 0wlkonlem1

Description: Lemma 1 for 0wlkon and 0trlon . (Contributed by AV, 3-Jan-2021) (Revised by AV, 23-Mar-2021)

Ref Expression
Hypothesis 0wlk.v V=VtxG
Assertion 0wlkonlem1 P:00VP0=NNVNV

Proof

Step Hyp Ref Expression
1 0wlk.v V=VtxG
2 id P:00VP:00V
3 0nn0 00
4 0elfz 00000
5 3 4 mp1i P:00V000
6 2 5 ffvelcdmd P:00VP0V
7 6 adantr P:00VP0=NP0V
8 eleq1 N=P0NVP0V
9 8 eqcoms P0=NNVP0V
10 9 adantl P:00VP0=NNVP0V
11 7 10 mpbird P:00VP0=NNV
12 id NVNV
13 11 12 jccir P:00VP0=NNVNV