Metamath Proof Explorer


Theorem 19.9d2rf

Description: A deduction version of one direction of 19.9 with two variables. (Contributed by Thierry Arnoux, 20-Mar-2017)

Ref Expression
Hypotheses 19.9d2rf.0 y φ
19.9d2rf.1 φ x ψ
19.9d2rf.2 φ y ψ
19.9d2rf.3 φ x A y B ψ
Assertion 19.9d2rf φ ψ

Proof

Step Hyp Ref Expression
1 19.9d2rf.0 y φ
2 19.9d2rf.1 φ x ψ
3 19.9d2rf.2 φ y ψ
4 19.9d2rf.3 φ x A y B ψ
5 rexex x A y B ψ x y B ψ
6 rexex y B ψ y ψ
7 6 eximi x y B ψ x y ψ
8 4 5 7 3syl φ x y ψ
9 1 2 nfexd φ x y ψ
10 9 19.9d φ x y ψ y ψ
11 8 10 mpd φ y ψ
12 3 19.9d φ y ψ ψ
13 11 12 mpd φ ψ